scholarly journals Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS (2008)

2017 ◽  
Vol 17 (5) ◽  
pp. 3769-3784 ◽  
Author(s):  
Kenneth E. Christian ◽  
William H. Brune ◽  
Jingqiu Mao

Abstract. Developing predictive capability for future atmospheric oxidation capacity requires a detailed analysis of model uncertainties and sensitivity of the modeled oxidation capacity to model input variables. Using oxidant mixing ratios modeled by the GEOS-Chem chemical transport model and measured on the NASA DC-8 aircraft, uncertainty and global sensitivity analyses were performed on the GEOS-Chem chemical transport model for the modeled oxidants hydroxyl (OH), hydroperoxyl (HO2), and ozone (O3). The sensitivity of modeled OH, HO2, and ozone to model inputs perturbed simultaneously within their respective uncertainties were found for the flight tracks of NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) A and B campaigns (2008) in the North American Arctic. For the spring deployment (ARCTAS-A), ozone was most sensitive to the photolysis rate of NO2, the NO2 + OH reaction rate, and various emissions, including methyl bromoform (CHBr3). OH and HO2 were overwhelmingly sensitive to aerosol particle uptake of HO2 with this one factor contributing upwards of 75 % of the uncertainty in HO2. For the summer deployment (ARCTAS-B), ozone was most sensitive to emission factors, such as soil NOx and isoprene. OH and HO2 were most sensitive to biomass emissions and aerosol particle uptake of HO2. With modeled HO2 showing a factor of 2 underestimation compared to measurements in the lowest 2 km of the troposphere, lower uptake rates (γHO2 < 0. 055), regardless of whether or not the product of the uptake is H2O or H2O2, produced better agreement between modeled and measured HO2.

2016 ◽  
Author(s):  
Kenneth E. Christian ◽  
William H. Brune ◽  
Jingqiu Mao

Abstract. Developing predictive capability for future atmospheric oxidation capability requires a detailed analysis of model uncertainties and sensitivity of the modeled oxidation capacity to model input variables. Using oxidant mixing ratios modeled by the GEOS-Chem chemical transport model and measured on the NASA DC8 aircraft, uncertainty and global sensitivity analyses were performed on the GEOS-Chem chemical transport model for the modeled oxidants hydroxyl (OH), hydroperoxyl (HO2), and ozone (O3). The sensitivity of modeled OH, HO2, and ozone to modeled inputs perturbed simultaneously within their respective uncertainties were found for the period of NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) A &amp; B campaigns (2008) in the North American Arctic. For the spring deployment (ARCTAS-A), ozone is most sensitive to the photolysis rate of NO2, the NO2 + OH reaction rate, and various emissions, including methyl bromoform (CHBr3). OH and HO2 were overwhelmingly sensitive to aerosol particle uptake of HO2 with this one factor contributing upwards of 75 % of the uncertainty in HO2. For the summer deployment (ARCTAS-B), ozone was most sensitive to emissions factors, such as soil NOx and isoprene. OH and HO2 were most sensitive to biomass emissions and aerosol particle uptake of HO2. With modeled HO2 showing a factor of 2 underestimation compared to measurements in the lowest 2 kilometers of the troposphere, lower uptake rates (γHO2 < 0.04), regardless of whether or not the product of the uptake is H2O or H2O2, produced better agreement between modeled and measured HO2.


2018 ◽  
Vol 18 (4) ◽  
pp. 2443-2460 ◽  
Author(s):  
Kenneth E. Christian ◽  
William H. Brune ◽  
Jingqiu Mao ◽  
Xinrong Ren

Abstract. Making sense of modeled atmospheric composition requires not only comparison to in situ measurements but also knowing and quantifying the sensitivity of the model to its input factors. Using a global sensitivity method involving the simultaneous perturbation of many chemical transport model input factors, we find the model uncertainty for ozone (O3), hydroxyl radical (OH), and hydroperoxyl radical (HO2) mixing ratios, and apportion this uncertainty to specific model inputs for the DC-8 flight tracks corresponding to the NASA Intercontinental Chemical Transport Experiment (INTEX) campaigns of 2004 and 2006. In general, when uncertainties in modeled and measured quantities are accounted for, we find agreement between modeled and measured oxidant mixing ratios with the exception of ozone during the Houston flights of the INTEX-B campaign and HO2 for the flights over the northernmost Pacific Ocean during INTEX-B. For ozone and OH, modeled mixing ratios were most sensitive to a bevy of emissions, notably lightning NOx, various surface NOx sources, and isoprene. HO2 mixing ratios were most sensitive to CO and isoprene emissions as well as the aerosol uptake of HO2. With ozone and OH being generally overpredicted by the model, we find better agreement between modeled and measured vertical profiles when reducing NOx emissions from surface as well as lightning sources.


2020 ◽  
Vol 20 (13) ◽  
pp. 8181-8200
Author(s):  
Yuan Yang ◽  
Yonghong Wang ◽  
Putian Zhou ◽  
Dan Yao ◽  
Dongsheng Ji ◽  
...  

Abstract. Hydroxyl (OH) radicals, nitrate (NO3) radicals and ozone (O3) play central roles in the troposphere because they control the lifetimes of many trace gases that result from anthropogenic and biogenic origins. To estimate the air chemistry, the atmospheric reactivity and oxidation capacity were comprehensively analyzed based on a parameterization method at a suburban site in Xianghe in the North China Plain from 6 July 2018 to 6 August 2018. The total OH, NO3 and O3 reactivities at the site varied from 9.2 to 69.6, 0.7 to 27.5 and 3.3×10-4 to 1.8×10-2 s−1 with campaign-averaged values of 27.5±9.7, 2.2±2.6 and 1.2±1.7×10-3 s−1 (± standard deviation), respectively. NOx (NO+NO2) was by far the main contributor to the reactivities of the three oxidants, with average values of 43 %–99 %. Alkenes dominated the OH, NO3 and O3 reactivities towards total nonmethane volatile organic compounds (NMVOCs), accounting for 42.9 %, 77.8 % and 94.0 %, respectively. The total OH, NO3 and O3 reactivities displayed similar diurnal variations with the lowest values during the afternoon but the highest values during rush hours, and the diurnal profile of NOx appears to be the major driver for the diurnal profiles of the reactivities of the three oxidants. A box model (a model to Simulate the concentrations of Organic vapors, Sulfuric Acid and Aerosols; SOSAA) derived from a column chemical transport model was used to simulate OH and NO3 concentrations during the observation period. The calculated atmospheric oxidation capacity (AOC) reached 4.5×108 moleculescm-3s-1, with a campaign-averaged value of 7.8×107 moleculescm-3s-1 dominated by OH (7.7×107 moleculescm-3s-1, 98.2 %), O3 (1.2×106 moleculescm-3s-1, 1.5 %) and NO3 (1.8×105 moleculescm-3s-1, 0.3 %). Overall, the integration of OH, NO3 and O3 reactivities analysis could provide useful insights for NMVOC pollution control in the North China Plain. We suggest that further studies, especially direct observations of OH and NO3 radical concentrations and their reactivities, are required to better understand trace gas reactivity and AOC.


2011 ◽  
Vol 11 (2) ◽  
pp. 4105-4139 ◽  
Author(s):  
E. V. Fischer ◽  
D. A. Jaffe ◽  
E. C. Weatherhead

Abstract. We report on the first multi-year springtime measurements of PAN in the free troposphere over the US Pacific Northwest. The measurements were made at the summit of Mount Bachelor (43.979° N, 121.687° W; 2.7 km a.s.l.) by gas chromatography with electron capture detector during spring 2008, 2009, and 2010. This dataset provides an observational estimate of the month-to-month and springtime interannual variability of PAN mixing ratios in this region. Springtime seasonal mean (1 April–20 May) PAN mixing ratios at Mount Bachelor varied from 100 pptv to 152 pptv. The standard deviation of the three seasonal means was 28 pptv, 21% of the springtime mean. We focus on three factors that we expect to drive PAN variability: biomass burning, transport efficiency over the central and eastern Pacific, and transport temperature. There was an early and unusually strong fire source in southeastern Russia in spring 2008 due to early snow melt, and several fire plumes were observed at Mount Bachelor. Colder air mass transport from higher altitudes in April 2009 is consistent with the higher average PAN mixing ratios observed at MBO during this month. A trough located off the US Pacific Northwest coast in April 2010 caused reduced transport from the north in spring 2010 as compared to previous years. It also facilitated more frequent transport to Mount Bachelor during spring 2010 from the southwest and from lower elevations. Zhang et al. (2008) used the GEOS-Chem global chemical transport model to show that rising Asian NOx emissions from 2000 to 2006 resulted in a relatively larger positive trend in PAN than O3 over western North America. However the model results only considered monotonic changes in Asian emissions, whereas other factors, such as biomass burning, isoprene emissions or climate change can complicate the atmospheric concentrations. We combined the observed variability in PAN and O3 at Mount Bachelor with a range of possible trends in these species to determine the observational requirements to detect the trends. Though the relative increase in PAN is expected to be nearly four times larger than that of O3, PAN is more variable. If PAN mixing ratios are currently increasing at a rate of 4% per year due to rising Asian emissions, we would detect a trend with 13 yr of measurements at a site like Mount Bachelor. If the corresponding trend in O3 is 1% per year, the trends in O3 and PAN should be detected on approximately the same timescale.


2020 ◽  
Author(s):  
Robert J. Parker ◽  
Chris Wilson ◽  
A. Anthony Bloom ◽  
Edward Comyn-Platt ◽  
Garry Hayman ◽  
...  

Abstract. Wetland emissions contribute the largest uncertainties to the current global atmospheric CH4 budget and how these emissions will change under future climate scenarios is also still poorly understood. Bloom et al. (2017b) developed WetCHARTs, a simple, data-driven, ensemble-based model that produces estimates of CH4 wetland emissions constrained by observations of precipitation and temperature. This study performs the first detailed global and regional evaluation of the WetCHARTs CH4 emission model ensemble against 9 years of high-quality, validated atmospheric CH4 observations from the GOSAT satellite. A 3-D chemical transport model is used to estimate atmospheric CH4 mixing ratios based on the WetCHARTs emissions and other sources. Across all years and all ensemble members, the observed global seasonal cycle amplitude is typically underestimated by WetCHARTs by −7.4 ppb, but the correlation coefficient of 0.83 shows that the seasonality is well-produced at a global scale. The Southern Hemisphere has less of a bias (−1.9 ppb) than the Northern Hemisphere (−9.3 ppb) and our findings show that it is typically the North Tropics where this bias is worst (−11.9 ppb). We find that WetCHARTs generally performs well in reproducing the observed wetland CH4 seasonal cycle for the majority of wetland regions although, for some regions, regardless of the ensemble configuration, WetCHARTs does not well-reproduce the observed seasonal cycle. In order to investigate this, we performed detailed analysis of some of the more challenging exemplar regions (Parana River, Congo, Sudd and Yucatan). Our results show that certain ensemble members are more suited to specific regions, either due to deficiencies in the underlying data driving the model or complexities in representing the processes involved. In particular, incorrect definition of the wetland extent is found to be the most common reason for the discrepancy between the modelled and observed CH4 concentrations. The remaining driving data (i.e. heterotrophic respiration and temperature) are shown to also contribute to the mismatch to observations, with the details differing on a region-by-region basis but generally showing that some degree of temperature dependency is better than none. We conclude that the data-driven approach used by WetCHARTs is well-suited to produce a benchmark ensemble dataset against which to evaluate more complex process-based land surface models that explicitly model the hydrological behaviour of these complex wetland regions.


2020 ◽  
Vol 17 (22) ◽  
pp. 5669-5691
Author(s):  
Robert J. Parker ◽  
Chris Wilson ◽  
A. Anthony Bloom ◽  
Edward Comyn-Platt ◽  
Garry Hayman ◽  
...  

Abstract. Wetland emissions contribute the largest uncertainties to the current global atmospheric CH4 budget, and how these emissions will change under future climate scenarios is also still poorly understood. Bloom et al. (2017b) developed WetCHARTs, a simple, data-driven, ensemble-based model that produces estimates of CH4 wetland emissions constrained by observations of precipitation and temperature. This study performs the first detailed global and regional evaluation of the WetCHARTs CH4 emission model ensemble against 9 years of high-quality, validated atmospheric CH4 observations from GOSAT (the Greenhouse Gases Observing Satellite). A 3-D chemical transport model is used to estimate atmospheric CH4 mixing ratios based on the WetCHARTs emissions and other sources. Across all years and all ensemble members, the observed global seasonal-cycle amplitude is typically underestimated by WetCHARTs by −7.4 ppb, but the correlation coefficient of 0.83 shows that the seasonality is well-produced at a global scale. The Southern Hemisphere has less of a bias (−1.9 ppb) than the Northern Hemisphere (−9.3 ppb), and our findings show that it is typically the North Tropics where this bias is the worst (−11.9 ppb). We find that WetCHARTs generally performs well in reproducing the observed wetland CH4 seasonal cycle for the majority of wetland regions although, for some regions, regardless of the ensemble configuration, WetCHARTs does not reproduce the observed seasonal cycle well. In order to investigate this, we performed detailed analysis of some of the more challenging exemplar regions (Paraná River, Congo, Sudd and Yucatán). Our results show that certain ensemble members are more suited to specific regions, due to either deficiencies in the underlying data driving the model or complexities in representing the processes involved. In particular, incorrect definition of the wetland extent is found to be the most common reason for the discrepancy between the modelled and observed CH4 concentrations. The remaining driving data (i.e. heterotrophic respiration and temperature) are shown to also contribute to the mismatch with observations, with the details differing on a region-by-region basis but generally showing that some degree of temperature dependency is better than none. We conclude that the data-driven approach used by WetCHARTs is well-suited to producing a benchmark ensemble dataset against which to evaluate more complex process-based land surface models that explicitly model the hydrological behaviour of these complex wetland regions.


2012 ◽  
Vol 12 (15) ◽  
pp. 6723-6740 ◽  
Author(s):  
J. P. Parrella ◽  
D. J. Jacob ◽  
Q. Liang ◽  
Y. Zhang ◽  
L. J. Mickley ◽  
...  

Abstract. We present a new model for the global tropospheric chemistry of inorganic bromine (Bry) coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM). Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone mixing ratios by <1–8 nmol mol−1 (6.5% globally), with the largest effects in the northern extratropics in spring. The global mean tropospheric OH concentration decreases by 4%. Inclusion of bromine chemistry improves the ability of global models (GEOS-Chem and p-TOMCAT) to simulate observed 19th-century ozone and its seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document