scholarly journals Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms

2017 ◽  
Vol 17 (15) ◽  
pp. 9665-9675 ◽  
Author(s):  
Ki-Tae Park ◽  
Sehyun Jang ◽  
Kitack Lee ◽  
Young Jun Yoon ◽  
Min-Seob Kim ◽  
...  

Abstract. The connection between marine biogenic dimethyl sulfide (DMS) and the formation of aerosol particles in the Arctic atmosphere was evaluated by analyzing atmospheric DMS mixing ratio, aerosol particle size distribution and aerosol chemical composition data that were concurrently collected at Ny-Ålesund, Svalbard (78.5° N, 11.8° E), during April and May 2015. Measurements of aerosol sulfur (S) compounds showed distinct patterns during periods of Arctic haze (April) and phytoplankton blooms (May). Specifically, during the phytoplankton bloom period the contribution of DMS-derived SO42− to the total aerosol SO42− increased by 7-fold compared with that during the proceeding Arctic haze period, and accounted for up to 70 % of fine SO42− particles (<  2.5 µm in diameter). The results also showed that the formation of submicron SO42− aerosols was significantly associated with an increase in the atmospheric DMS mixing ratio. More importantly, two independent estimates of the formation of DMS-derived SO42− aerosols, calculated using the stable S-isotope ratio and the non-sea-salt SO42− ∕ methanesulfonic acid ratio, respectively, were in close agreement, providing compelling evidence that the contribution of biogenic DMS to the formation of aerosol particles was substantial during the Arctic phytoplankton bloom period.

2017 ◽  
Author(s):  
Ki-Tae Park ◽  
Sehyun Jang ◽  
Kitack Lee ◽  
Young Jun Yoon ◽  
Min-Seob Kim ◽  
...  

Abstract. The connection between marine biogenic dimethyl sulfide (DMS) and the formation of aerosol particles in the Arctic atmosphere was evaluated by analyzing atmospheric DMS mixing ratios, aerosol particle size distributions and aerosol chemical composition data that were concurrently collected at Ny-Ålesund, Svalbard (78.5° N, 11.8° E) during April and May 2015. Measurements of aerosol sulfur (S) compounds showed distinct patterns during periods of Arctic haze (April) and phytoplankton blooms (May). Specifically, during the phytoplankton bloom period the contribution of DMS-derived SO42− to the total aerosol SO42− increased by 7-fold compared with that during the proceeding Arctic haze period, accounting for up to 70 % of fine SO42− particles (


2017 ◽  
Vol 14 (9) ◽  
pp. 2407-2427 ◽  
Author(s):  
Rachel Hussherr ◽  
Maurice Levasseur ◽  
Martine Lizotte ◽  
Jean-Éric Tremblay ◽  
Jacoba Mol ◽  
...  

Abstract. In an experimental assessment of the potential impact of Arctic Ocean acidification on seasonal phytoplankton blooms and associated dimethyl sulfide (DMS) dynamics, we incubated water from Baffin Bay under conditions representing an acidified Arctic Ocean. Using two light regimes simulating under-ice or subsurface chlorophyll maxima (low light; low PAR and no UVB) and ice-free (high light; high PAR + UVA + UVB) conditions, water collected at 38 m was exposed over 9 days to 6 levels of decreasing pH from 8.1 to 7.2. A phytoplankton bloom dominated by the centric diatoms Chaetoceros spp. reaching up to 7.5 µg chlorophyll a L−1 took place in all experimental bags. Total dimethylsulfoniopropionate (DMSPT) and DMS concentrations reached 155 and 19 nmol L−1, respectively. The sharp increase in DMSPT and DMS concentrations coincided with the exhaustion of NO3− in most microcosms, suggesting that nutrient stress stimulated DMS(P) synthesis by the diatom community. Under both light regimes, chlorophyll a and DMS concentrations decreased linearly with increasing proton concentration at all pH levels tested. Concentrations of DMSPT also decreased but only under high light and over a smaller pH range (from 8.1 to 7.6). In contrast to nano-phytoplankton (2–20 µm), pico-phytoplankton ( ≤  2 µm) was stimulated by the decreasing pH. We furthermore observed no significant difference between the two light regimes tested in term of chlorophyll a, phytoplankton abundance and taxonomy, and DMSP and DMS net concentrations. These results show that ocean acidification could significantly decrease the algal biomass and inhibit DMS production during the seasonal phytoplankton bloom in the Arctic, with possible consequences for the regional climate.


2017 ◽  
Vol 14 (12) ◽  
pp. 3129-3155 ◽  
Author(s):  
Hakase Hayashida ◽  
Nadja Steiner ◽  
Adam Monahan ◽  
Virginie Galindo ◽  
Martine Lizotte ◽  
...  

Abstract. Sea ice represents an additional oceanic source of the climatically active gas dimethyl sulfide (DMS) for the Arctic atmosphere. To what extent this source contributes to the dynamics of summertime Arctic clouds is, however, not known due to scarcity of field measurements. In this study, we developed a coupled sea ice–ocean ecosystem–sulfur cycle model to investigate the potential impact of bottom-ice DMS and its precursor dimethylsulfoniopropionate (DMSP) on the oceanic production and emissions of DMS in the Arctic. The results of the 1-D model simulation were compared with field data collected during May and June of 2010 in Resolute Passage. Our results reproduced the accumulation of DMS and DMSP in the bottom ice during the development of an ice algal bloom. The release of these sulfur species took place predominantly during the earlier phase of the melt period, resulting in an increase of DMS and DMSP in the underlying water column prior to the onset of an under-ice phytoplankton bloom. Production and removal rates of processes considered in the model are analyzed to identify the processes dominating the budgets of DMS and DMSP both in the bottom ice and the underlying water column. When openings in the ice were taken into account, the simulated sea–air DMS flux during the melt period was dominated by episodic spikes of up to 8.1 µmol m−2 d−1. Further model simulations were conducted to assess the effects of the incorporation of sea-ice biogeochemistry on DMS production and emissions, as well as the sensitivity of our results to changes of uncertain model parameters of the sea-ice sulfur cycle. The results highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that should be better constrained by new observations.


2016 ◽  
Vol 16 (11) ◽  
pp. 6665-6680 ◽  
Author(s):  
Emma L. Mungall ◽  
Betty Croft ◽  
Martine Lizotte ◽  
Jennie L. Thomas ◽  
Jennifer G. Murphy ◽  
...  

Abstract. Dimethyl sulfide (DMS) plays a major role in the global sulfur cycle. In addition, its atmospheric oxidation products contribute to the formation and growth of atmospheric aerosol particles, thereby influencing cloud condensation nuclei (CCN) populations and thus cloud formation. The pristine summertime Arctic atmosphere is strongly influenced by DMS. However, atmospheric DMS mixing ratios have only rarely been measured in the summertime Arctic. During July–August, 2014, we conducted the first high time resolution (10 Hz) DMS mixing ratio measurements for the eastern Canadian Archipelago and Baffin Bay as one component of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments (NETCARE). DMS mixing ratios ranged from below the detection limit of 4 to 1155 pptv (median 186 pptv) during the 21-day shipboard campaign. A transfer velocity parameterization from the literature coupled with coincident atmospheric and seawater DMS measurements yielded air–sea DMS flux estimates ranging from 0.02 to 12 µmol m−2 d−1. Air-mass trajectory analysis using FLEXPART-WRF and sensitivity simulations with the GEOS-Chem chemical transport model indicated that local sources (Lancaster Sound and Baffin Bay) were the dominant contributors to the DMS measured along the 21-day ship track, with episodic transport from the Hudson Bay System. After adjusting GEOS-Chem oceanic DMS values in the region to match measurements, GEOS-Chem reproduced the major features of the measured time series but was biased low overall (2–1006 pptv, median 72 pptv), although within the range of uncertainty of the seawater DMS source. However, during some 1–2 day periods the model underpredicted the measurements by more than an order of magnitude. Sensitivity tests indicated that non-marine sources (lakes, biomass burning, melt ponds, and coastal tundra) could make additional episodic contributions to atmospheric DMS in the study region, although local marine sources of DMS dominated. Our results highlight the need for both atmospheric and seawater DMS data sets with greater spatial and temporal resolution, combined with further investigation of non-marine DMS sources for the Arctic.


2021 ◽  
Vol 21 (4) ◽  
pp. 2895-2916
Author(s):  
Jakob B. Pernov ◽  
Rossana Bossi ◽  
Thibaut Lebourgeois ◽  
Jacob K. Nøjgaard ◽  
Rupert Holzinger ◽  
...  

Abstract. There are few long-term datasets of volatile organic compounds (VOCs) in the High Arctic. Furthermore, knowledge about their source regions remains lacking. To address this matter, we report a multiseason dataset of highly time-resolved VOC measurements in the High Arctic from April to October 2018. We have utilized a combination of measurement and modeling techniques to characterize the mixing ratios, temporal patterns, and sources of VOCs at the Villum Research Station at Station Nord in northeastern Greenland. Atmospheric VOCs were measured using proton-transfer-reaction time-of-flight mass spectrometry. Ten ions were selected for source apportionment with the positive matrix factorization (PMF) receptor model. A four-factor solution to the PMF model was deemed optimal. The factors identified were biomass burning, marine cryosphere, background, and Arctic haze. The biomass burning factor described the variation of acetonitrile and benzene and peaked during August and September. The marine cryosphere factor was comprised of carboxylic acids (formic, acetic, and C3H6O2) as well as dimethyl sulfide (DMS). This factor displayed peak contributions during periods of snow and sea ice melt. A potential source contribution function (PSCF) showed that the source regions for this factor were the coasts around southeastern and northeastern Greenland. The background factor was temporally ubiquitous, with a slight decrease in the summer. This factor was not driven by any individual chemical species. The Arctic haze factor was dominated by benzene with contributions from oxygenated VOCs. This factor exhibited a maximum in the spring and minima during the summer and autumn. This temporal pattern and species profile are indicative of anthropogenic sources in the midlatitudes. This study provides seasonal characteristics and sources of VOCs and can help elucidate the processes affecting the atmospheric chemistry and biogeochemical feedback mechanisms in the High Arctic.


2016 ◽  
Author(s):  
Rachel Hussherr ◽  
Maurice Levasseur ◽  
Martine Lizotte ◽  
Jean-Éric Tremblay ◽  
Jacoba Mol ◽  
...  

Abstract. In an experimental assessment of the potential impact of Arctic Ocean acidification on seasonal phytoplankton blooms and associated dimethylsulfide (DMS) dynamics, we incubated water from Baffin Bay under conditions representing an acidified Arctic Ocean. Using two light regimes simulating under-ice/ subsurface chlorophyll maxima (low light; Low PAR and no UVB) and ice-free (high light; High PAR + UVA + UVB) conditions, water collected at 38 m was exposed over 9 days to 6 levels of decreasing pH from 8.1 to 7.2. A phytoplankton bloom dominated by the centric diatoms Chaetoceros spp. reaching up to 7.5 µg chlorophyll a L−1 took place in all experimental bags. Total dimethylsulfoniopropionate (DMSPT) and DMS concentrations reached 155 nmol L−1 and 19 nmol L−1, respectively. Under both light regimes, chlorophyll a and DMS concentrations decreased linearly with increasing proton concentration at all pH tested. Concentrations of DMSPT also decreased but only under high light and over a smaller pH range (from 8.1 to 7.6). In contrast to nanophytoplankton (2–20 µm), picophytoplankton (≤ 2 µm) was stimulated by the decreasing pH. We furthermore observed no significant difference between the two light regimes tested in term of chlorophyll a, phytoplankton abundance/ taxonomy, and DMSP/ DMS net concentrations. These results show that OA could significantly decrease the algal biomass and inhibit DMS production during the seasonal phytoplankton bloom in the Arctic, with possible consequences for the regional climate.


2016 ◽  
Author(s):  
Hakase Hayashida ◽  
Nadja Steiner ◽  
Adam Monahan ◽  
Virginie Galindo ◽  
Martine Lizotte ◽  
...  

Abstract. Sea ice represents an additional oceanic source of the climatically active gas dimethylsulfide (DMS) for the Arctic atmosphere. To what extent this source contributes to the dynamics of summertime Arctic clouds is however not known due to scarcity of field measurements. In this study, we developed a coupled sea ice-ocean ecosystem-sulfur cycle model to investigate the potential impact of bottom-ice DMS and its precursor dimethylsulfoniopropionate (DMSP) on the oceanic production and emission of DMS in the Arctic. The result of the 1-D model simulation was compared with field data collected during May and June of 2010 in Resolute Passage. Our result reproduced the accumulation of DMS and DMSP in the bottom ice during the development of an ice algal bloom. The flushing of these sulfur species took place predominantly during the earlier phase of the melt period, resulting in an increase of DMS and DMSP in the underlying water column prior to the onset of an under-ice phytoplankton bloom. Processes that dominated the budgets of bottom- and under-ice DMS and DMSP were identified through an analysis of production and removal rates of processes considered in the model. When openings in the ice were taken into account, the simulated sea-air DMS flux during the melt period was dominated by episodic spikes of up to 5.6 μmol m−2 d−1. Further model simulations were conducted to assess the effects of the incorporation of sea-ice biogeochemistry on DMS production and emissions, as well as the sensitivity of our results to changes of uncertain model parameters of the sea-ice sulfur cycle. The results highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that would be better constrained by new observations.


2021 ◽  
Vol 21 (12) ◽  
pp. 9761-9777
Author(s):  
Sehyun Jang ◽  
Ki-Tae Park ◽  
Kitack Lee ◽  
Young Jun Yoon ◽  
Kitae Kim ◽  
...  

Abstract. Seasonal to interannual variations in the concentrations of sulfur aerosols (< 2.5 µm in diameter; non sea-salt sulfate: NSS-SO42-; anthropogenic sulfate: Anth-SO42-; biogenic sulfate: Bio-SO42-; methanesulfonic acid: MSA) in the Arctic atmosphere were investigated using measurements of the chemical composition of aerosols collected at Ny-Ålesund, Svalbard (78.9∘ N, 11.9∘ E) from 2015 to 2019. In all measurement years the concentration of NSS-SO42- was highest during the pre-bloom period and rapidly decreased towards summer. During the pre-bloom period we found a strong correlation between NSS-SO42- (sum of Anth-SO42- and Bio-SO42-) and Anth-SO42-. This was because more than 50 % of the NSS-SO42- measured during this period was Anth-SO42-, which originated in northern Europe and was subsequently transported to the Arctic in Arctic haze. Unexpected increases in the concentration of Bio-SO42- aerosols (an oxidation product of dimethylsulfide: DMS) were occasionally found during the pre-bloom period. These probably originated in regions to the south (the North Atlantic Ocean and the Norwegian Sea) rather than in ocean areas in the proximity of Ny-Ålesund. Another oxidation product of DMS is MSA, and the ratio of MSA to Bio-SO42- is extensively used to estimate the total amount of DMS-derived aerosol particles in remote marine environments. The concentration of MSA during the pre-bloom period remained low, primarily because of the greater loss of MSA relative to Bio-SO42- and the suppression of condensation of gaseous MSA onto particles already present in air masses being transported northwards from distant ocean source regions (existing particles). In addition, the low light intensity during the pre-bloom period resulted in a low concentration of photochemically activated oxidant species including OH radicals and BrO; these conditions favored the oxidation pathway of DMS to Bio-SO42- rather than to MSA, which acted to lower the MSA concentration at Ny-Ålesund. The concentration of MSA peaked in May or June and was positively correlated with phytoplankton biomass in the Greenland and Barents seas around Svalbard. As a result, the mean ratio of MSA to the DMS-derived aerosols was low (0.09 ± 0.07) in the pre-bloom period but high (0.32 ± 0.15) in the bloom and post-bloom periods. There was large interannual variability in the ratio of MSA to Bio-SO42- (i.e., 0.24 ± 0.11 in 2017, 0.40 ± 0.14 in 2018, and 0.36 ± 0.14 in 2019) during the bloom and post-bloom periods. This was probably associated with changes in the chemical properties of existing particles, biological activities surrounding the observation site, and air mass transport patterns. Our results indicate that MSA is not a conservative tracer for predicting DMS-derived particles, and the contribution of MSA to the growth of newly formed particles may be much larger during the bloom and post-bloom periods than during the pre-bloom period.


Sign in / Sign up

Export Citation Format

Share Document