scholarly journals Aerosol optical depth in the European Brewer Network

2018 ◽  
Vol 18 (6) ◽  
pp. 3885-3902 ◽  
Author(s):  
Javier López-Solano ◽  
Alberto Redondas ◽  
Thomas Carlund ◽  
Juan J. Rodriguez-Franco ◽  
Henri Diémoz ◽  
...  

Abstract. Aerosols play an important role in key atmospheric processes and feature high spatial and temporal variabilities. This has motivated scientific interest in the development of networks capable of measuring aerosol properties over large geographical areas in near-real time. In this work we present and discuss results of an aerosol optical depth (AOD) algorithm applied to instruments of the European Brewer Network. This network is comprised of close to 50 Brewer spectrophotometers, mostly located in Europe and adjacent areas, although instruments operating at, for example, South America and Australia are also members. Although we only show results for instruments calibrated by the Regional Brewer Calibration Center for Europe, the implementation of the AOD algorithm described is intended to be used by the whole network in the future. Using data from the Brewer intercomparison campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sun photometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and, for well-maintained instruments, a stability similar to that of the ozone measurements. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of AOD.

2017 ◽  
Author(s):  
Javier López-Solano ◽  
Alberto Redondas ◽  
Thomas Carlund ◽  
Juan J. Rodriguez-Franco ◽  
Henri Diémoz ◽  
...  

Abstract. The high spatial and temporal variability of aerosols make networks capable of measuring their properties in near real time of high scientific interest. In this work we present and discuss results of an aerosol optical depth algorithm to be used in the European Brewer Network, which provides data in near real time of more than 30 spectrophotometers located from Tamanrasset (Algeria) to Kangerlussuaq (Greenland). Using data from the Brewer Intercomparison Campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sunphotometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and a stability similar to that of the ozone measurements for well-maintained instruments. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of aerosols.


2019 ◽  
Vol 19 (22) ◽  
pp. 14149-14171 ◽  
Author(s):  
Jose Antonio Benavent-Oltra ◽  
Roberto Román ◽  
Juan Andrés Casquero-Vera ◽  
Daniel Pérez-Ramírez ◽  
Hassan Lyamani ◽  
...  

Abstract. This study evaluates the potential of the GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) to retrieve continuous day-to-night aerosol properties, both column-integrated and vertically resolved. The study is focused on the evaluation of GRASP retrievals during an intense Saharan dust event that occurred during the Sierra Nevada Lidar aerOsol Profiling Experiment I (SLOPE I) field campaign. For daytime aerosol retrievals, we combined the measurements of the ground-based lidar from EARLINET (European Aerosol Research Lidar Network) station and sun–sky photometer from AERONET (Aerosol Robotic Network), both instruments co-located in Granada (Spain). However, for night-time retrievals three different combinations of active and passive remote-sensing measurements are proposed. The first scheme (N0) uses lidar night-time measurements in combination with the interpolation of sun–sky daytime measurements. The other two schemes combine lidar night-time measurements with night-time aerosol optical depth obtained by lunar photometry either using intensive properties of the aerosol retrieved during sun–sky daytime measurements (N1) or using the Moon aureole radiance obtained by sky camera images (N2). Evaluations of the columnar aerosol properties retrieved by GRASP are done versus standard AERONET retrievals. The coherence of day-to-night evolutions of the different aerosol properties retrieved by GRASP is also studied. The extinction coefficient vertical profiles retrieved by GRASP are compared with the profiles calculated by the Raman technique at night-time with differences below 30 % for all schemes at 355, 532 and 1064 nm. Finally, the volume concentration and scattering coefficient retrieved by GRASP at 2500 m a.s.l. are evaluated by in situ measurements at this height at Sierra Nevada Station. The differences between GRASP and in situ measurements are similar for the different schemes, with differences below 30 % for both volume concentration and scattering coefficient. In general, for the scattering coefficient, the GRASP N0 and N1 show better results than the GRASP N2 schemes, while for volume concentration, GRASP N2 shows the lowest differences against in situ measurements (around 10 %) for high aerosol optical depth values.


2016 ◽  
Vol 9 (2) ◽  
pp. 455-467 ◽  
Author(s):  
D. Toledo ◽  
P. Rannou ◽  
J.-P. Pommereau ◽  
A. Sarkissian ◽  
T. Foujols

Abstract. A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.


2011 ◽  
Vol 11 (13) ◽  
pp. 6245-6263 ◽  
Author(s):  
K. Knobelspiesse ◽  
B. Cairns ◽  
J. Redemann ◽  
R. W. Bergstrom ◽  
A. Stohl

Abstract. Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of (0.555 μm).


Tellus B ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 216-228 ◽  
Author(s):  
C. Toledano ◽  
M. Wiegner ◽  
M. Garhammer ◽  
M. Seefeldner ◽  
J. Gasteiger ◽  
...  

2011 ◽  
Vol 11 (2) ◽  
pp. 6363-6413 ◽  
Author(s):  
K. Knobelspiesse ◽  
B. Cairns ◽  
J. Redemann ◽  
R. W. Bergstrom ◽  
A. Stohl

Abstract. Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. The Aerosol Polarimetry Sensor (APS), on the upcoming NASA Glory mission, has the potential to retrieve both cloud and aerosol properties because of its polarimetric, multiple view angle, and multi spectral observations. The APS airborne prototype is the Research Scanning Polarimeter (RSP), which has similar characteristics and can be used to demonstrate APS capabilities. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On March 13th, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution and the cloud droplet size distribution to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this case study in the context of the potential for future systematic APS observations of this kind, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of 0.555 μm.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1504
Author(s):  
Jaemin Kim ◽  
Yun Gon Lee ◽  
Ja-Ho Koo ◽  
Hanlim Lee

The attenuating effects of clouds and aerosols on global horizontal irradiance (GHI) and ultraviolet erythemal irradiance (UVER) were evaluated and compared using data from four sites in South Korea (Gangneung, Pohang, Mokpo, and Gosan) for the period 2005–2016. It was found that GHI and UVER are affected differently by various attenuating factors, resulting in an increase in the ratio of UVER to GHI with a decrease in the clearness index of GHI. A comparative analysis of the clearness indices of GHI and UVER identified an almost linear relationship between two transmittances by applying UVER with fixed slant ozone ( UVER 300 ) and there was a latitudinal difference in the relationship. Some nonlinearity remained in this relationship, which suggests a contribution by other factors such as clouds and aerosols. Variations of the UVER 300 ratio to GHI with cloud cover and aerosol optical depth were analyzed. The ratio increased with cloud cover and decreased with aerosol optical depth, indicating that clouds attenuate GHI more efficiently than UVER and that the attenuation by aerosols is greater for UVER than for GHI. A multiple linear regression analysis of the clearness indices of GHI and UVER 300 quantitively demonstrates differences in the radiation-reducing effects of clouds and aerosols, with some regional differences by site that can be attributed to local climatic characteristics in South Korea.


2015 ◽  
Vol 8 (8) ◽  
pp. 3117-3133 ◽  
Author(s):  
D. Pérez-Ramírez ◽  
I. Veselovskii ◽  
D. N. Whiteman ◽  
A. Suvorina ◽  
M. Korenskiy ◽  
...  

Abstract. This work deals with the applicability of the linear estimation technique (LE) to invert spectral measurements of aerosol optical depth (AOD) provided by AERONET CIMEL sun photometers. The inversion of particle properties using only direct-sun AODs allows the evaluation of parameters such as effective radius (reff) and columnar volume aerosol content (V) with significantly better temporal resolution than the operational AERONET algorithm which requires both direct sun and sky radiance measurements. Sensitivity studies performed demonstrate that the constraints on the range of the inversion are very important to minimize the uncertainties, and therefore estimates of reff can be obtained with uncertainties less than 30 % and of V with uncertainties below 40 %. The LE technique is applied to data acquired at five AERONET sites influenced by different aerosol types and the retrievals are compared with the results of the operational AERONET code. Good agreement between the two techniques is obtained when the fine mode predominates, while for coarse mode cases the LE results systematically underestimate both reff and V. The highest differences are found for cases where no mode predominates. To minimize these biases, correction functions are developed using the multi-year database of observations at selected sites, where the AERONET retrieval is used as the reference. The derived corrections are tested using data from 18 other AERONET stations offering a range of aerosol types. After correction, the LE retrievals provide better agreement with AERONET for all the sites considered. Finally, the LE approach developed here is applied to AERONET and star-photometry measurements in the city of Granada (Spain) to obtain day-to-night time evolution of columnar aerosol microphysical properties.


Sign in / Sign up

Export Citation Format

Share Document