Spectral aerosol optical depth characterization of desert dust during SAMUM 2006

Tellus B ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 216-228 ◽  
Author(s):  
C. Toledano ◽  
M. Wiegner ◽  
M. Garhammer ◽  
M. Seefeldner ◽  
J. Gasteiger ◽  
...  
Tellus B ◽  
2009 ◽  
Vol 61 (1) ◽  
Author(s):  
C. Toledano ◽  
M. Wiegner ◽  
M. Garhammer ◽  
M. Seefeldner ◽  
J. Gasteiger ◽  
...  

2017 ◽  
Author(s):  
Javier López-Solano ◽  
Alberto Redondas ◽  
Thomas Carlund ◽  
Juan J. Rodriguez-Franco ◽  
Henri Diémoz ◽  
...  

Abstract. The high spatial and temporal variability of aerosols make networks capable of measuring their properties in near real time of high scientific interest. In this work we present and discuss results of an aerosol optical depth algorithm to be used in the European Brewer Network, which provides data in near real time of more than 30 spectrophotometers located from Tamanrasset (Algeria) to Kangerlussuaq (Greenland). Using data from the Brewer Intercomparison Campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sunphotometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and a stability similar to that of the ozone measurements for well-maintained instruments. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of aerosols.


2017 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South-East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network), the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, on multiyear CALIPSO observations (01/2007–12/2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over SE (South-East) Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (Dust Aerosol Optical Depth) values, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with highest values observed during spring for northern China (Taklimakan/Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally we decompose the CALIPSO AOD (Aerosol Optical Depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of SE Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between 01/2007 and 12/2015 are calculated over SE Asia and over selected sub-regions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


2006 ◽  
Vol 6 (3) ◽  
pp. 697-713 ◽  
Author(s):  
G. Pace ◽  
A. di Sarra ◽  
D. Meloni ◽  
S. Piacentino ◽  
P. Chamard

Abstract. Aerosol optical depth and Ångström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001–September 2003. The average aerosol optical depth at 495.7 nm, τ, is 0.24±0.14; the average Ångström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from −0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses is of African origin. In almost all cases African aerosols display high values of τ and low values of α, typical of Saharan dust (average values of τ and α are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of τ and α (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of τ (0.15), and relatively small values of α (0.92). Intermediate values of α are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. Clean marine conditions are rare at Lampedusa, and are generally associated with subsidence of the airmasses reaching the island. Average values of τ and α for clean marine conditions are 0.11 and 0.86, respectively. The largest values of α (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles, that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of α. The seasonal distribution of the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and Ångström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α, that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in the Ångström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols.


2019 ◽  
Vol 99 ◽  
pp. 01003
Author(s):  
Athina Avgousta Floutsi ◽  
Marios Bruno Korras Carraca ◽  
Christos Matsoukas ◽  
Nikos Hatzianastassiou ◽  
George Biskos

Central and South Asia are regions of particular interest for studying atmospheric aerosols, being among the largest sources of desert dust aerosols globally. In this study we use the newest collection (C061) of MODIS - Aqua aerosol optical depth (AOD) at 550 nm and Ångström exponent (a) at 412/470 nm over the 15-year period between 2002 and 2017, providing the longest analyzed dataset for this region. According to our results, during spring and summer, high aerosol load (AOD up to 1.2) consisting of coarse desert dust particles, as indicated by a values as low as 0.15, is observed over the Taklamakan, Thar and Registan deserts and the region between the Aral and Caspian seas. The dust load is much lower during winter and autumn (lower AOD and higher a values compared to the other seasons). The interannual variation of AOD and a suggests that the dust load exhibits large decreasing trends (AOD slopes down to -0.22, a slopes up to 0.47 decade-1) over the Thar desert and large increasing trends between the Aral and Caspian seas (AOD and a slopes up to 0.23 decade-1 and down to -0.61 decade-1, respectively.) The AOD data are evaluated against AERONET surface-based measurements. Generally, MODIS and AERONET data are in good agreement with a correlation coefficient (R) equal to 0.835.


2016 ◽  
Vol 9 (2) ◽  
pp. 455-467 ◽  
Author(s):  
D. Toledo ◽  
P. Rannou ◽  
J.-P. Pommereau ◽  
A. Sarkissian ◽  
T. Foujols

Abstract. A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.


2018 ◽  
Vol 18 (2) ◽  
pp. 1337-1362 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


2021 ◽  
Author(s):  
Jasper F. Kok ◽  
Adeyemi A. Adebiyi ◽  
Samuel Albani ◽  
Yves Balkanski ◽  
Ramiro Checa-Garcia ◽  
...  

Abstract. Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, the relative contributions of the world’s major dust source regions to the global dust cycle remain poorly constrained. This problem hinders accounting for the potentially large impact of regional differences in dust properties on clouds, the Earth's energy balance, and terrestrial and marine biogeochemical cycles. Here, we constrain the contribution of each of the world’s main dust source regions to the global dust cycle. We use an analytical framework that integrates an ensemble of global model simulations with observationally informed constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We obtain a data set that constrains the relative contribution of each of nine major source regions to size-resolved dust emission, atmospheric loading, optical depth, concentration, and deposition flux. We find that the 22–29 Tg (one standard error range) global loading of dust with geometric diameter up to 20 μm is partitioned as follows: North African source regions contribute ~50 % (11–15 Tg), Asian source regions contribute ~40 % (8–13 Tg), and North American and Southern Hemisphere regions contribute ~10 % (1.8–3.2 Tg). Current models might on average be overestimating the contribution of North African sources to atmospheric dust loading at ~65 %, while underestimating the contribution of Asian dust at ~30 %. However, both our results and current models could be affected by unquantified biases, such as due to errors in separating dust aerosol optical depth from that produced by other aerosol species in remote sensing retrievals in poorly observed desert regions. Our results further show that each source region's dust loading peaks in local spring and summer, which is partially driven by increased dust lifetime in those seasons. We also quantify the dust deposition flux to the Amazon rainforest to be ~10 Tg/year, which is a factor of 2–3 less than inferred from satellite data by previous work that likely overestimated dust deposition by underestimating the dust mass extinction efficiency. The data obtained in this paper can be used to obtain improved constraints on dust impacts on clouds, climate, biogeochemical cycles, and other parts of the Earth system.


2018 ◽  
Author(s):  
Angela Benedetti ◽  
Francesca Di Giuseppe ◽  
Luke Jones ◽  
Vincent-Henri Peuch ◽  
Samuel Rémy ◽  
...  

Abstract. Asian Dust is a seasonal meteorological phenomenon which affects East Asia, and has severe consequences on the air quality of China, North and South Korea and Japan. Despite the continental extent, the prediction of severe episodes and the anticipation of their consequences is challenging. Three one-year experiments were run to assess the skill of the model of the European Centre for Medium-Range Weather Forecasts (ECMWF) in monitoring Asian dust and understand its relative contribution to air quality over China. Data used were the MODIS Dark Target and the Deep Blue Aerosol Optical Depth. In particular the experiments aimed at understanding the added value of data assimilation runs over a model run without any aerosol data. The year 2013 was chosen as representative for the availability of independent Aerosol Optical Depth (AOD) data from two established ground-based networks (AERONET and CARSNET), which could be used to evaluate experiments. Particulate Matter (PM) data from the China Environmental Protection Agency (CEPA) were also used in the evaluation. Results show that the assimilation of satellite AOD data is beneficial to predict the extent and magnitude of desert-dust events and to improve the forecast of such events. The availability of observations from the MODIS Deep Blue algorithm over bright surfaces is an asset, allowing for a better localization of the sources and definition of the dust events. In general both experiments constrained by data assimilation perform better that the unconstrained experiment, generally showing smaller mean normalized bias and fractional gross error with respect to the independent verification datasets. The impact of the assimilated satellite observations is larger at analysis time, but lasts well into the forecast. While assimilation is not a substitute for model development and characterization of the emission sources, results indicate that it can play a big role in delivering improved forecasts of Asian Dust.


2009 ◽  
Vol 2 (2) ◽  
pp. 213-229 ◽  
Author(s):  
N. Huneeus ◽  
O. Boucher ◽  
F. Chevallier

Abstract. We have developed a simplified aerosol model together with its tangent linear and adjoint versions for the ultimate aim of optimizing global aerosol and aerosol precursor emission using variational data assimilation. The model was derived from the general circulation model LMDz; it groups together the 24 aerosol species simulated in LMDz into 4 species, namely gaseous precursors, fine mode aerosols, coarse mode desert dust and coarse mode sea salt. The emissions have been kept as in the original model. Modifications, however, were introduced in the computation of aerosol optical depth and in the processes of sedimentation, dry and wet deposition and sulphur chemistry to ensure consistency with the new set of species and their composition. The simplified model successfully manages to reproduce the main features of the aerosol distribution in LMDz. The largest differences in aerosol load are observed for fine mode aerosols and gaseous precursors. Differences between the original and simplified models are mainly associated to the new deposition and sedimentation velocities consistent with the definition of species in the simplified model and the simplification of the sulphur chemistry. Furthermore, simulated aerosol optical depth remains within the variability of monthly AERONET observations for all aerosol types and all sites throughout most of the year. Largest differences are observed over sites with strong desert dust influence. In terms of the daily aerosol variability, the model is less able to reproduce the observed variability from the AERONET data with larger discrepancies in stations affected by industrial aerosols. The simplified model however, closely follows the daily simulation from LMDz. Sensitivity analyses with the tangent linear version show that the simplified sulphur chemistry is the dominant process responsible for the strong non-linearity of the model.


Sign in / Sign up

Export Citation Format

Share Document