scholarly journals High temporal resolution estimates of columnar aerosol microphysical parameters from spectrum of aerosol optical depth by linear estimation: application to long-term AERONET and star-photometry measurements

2015 ◽  
Vol 8 (8) ◽  
pp. 3117-3133 ◽  
Author(s):  
D. Pérez-Ramírez ◽  
I. Veselovskii ◽  
D. N. Whiteman ◽  
A. Suvorina ◽  
M. Korenskiy ◽  
...  

Abstract. This work deals with the applicability of the linear estimation technique (LE) to invert spectral measurements of aerosol optical depth (AOD) provided by AERONET CIMEL sun photometers. The inversion of particle properties using only direct-sun AODs allows the evaluation of parameters such as effective radius (reff) and columnar volume aerosol content (V) with significantly better temporal resolution than the operational AERONET algorithm which requires both direct sun and sky radiance measurements. Sensitivity studies performed demonstrate that the constraints on the range of the inversion are very important to minimize the uncertainties, and therefore estimates of reff can be obtained with uncertainties less than 30 % and of V with uncertainties below 40 %. The LE technique is applied to data acquired at five AERONET sites influenced by different aerosol types and the retrievals are compared with the results of the operational AERONET code. Good agreement between the two techniques is obtained when the fine mode predominates, while for coarse mode cases the LE results systematically underestimate both reff and V. The highest differences are found for cases where no mode predominates. To minimize these biases, correction functions are developed using the multi-year database of observations at selected sites, where the AERONET retrieval is used as the reference. The derived corrections are tested using data from 18 other AERONET stations offering a range of aerosol types. After correction, the LE retrievals provide better agreement with AERONET for all the sites considered. Finally, the LE approach developed here is applied to AERONET and star-photometry measurements in the city of Granada (Spain) to obtain day-to-night time evolution of columnar aerosol microphysical properties.

2015 ◽  
Vol 8 (3) ◽  
pp. 2331-2378
Author(s):  
D. Pérez-Ramírez ◽  
I. Veselovskii ◽  
D. N. Whiteman ◽  
A. Suvorina ◽  
M. Korenskiy ◽  
...  

Abstract. This work deals with the applicability of the Linear Estimation technique (LE) to invert spectral measurements of aerosol optical depth (AOD) provided by AERONET CIMEL sun-photometers. The inversion of particle properties using only direct sun AODs allows the evaluation of parameters such as effective radius (reff) and columnar volume aerosol content (V) with significantly better temporal resolution than the operational AERONET algorithm which requires both direct sun and sky radiance measurements. Sensitivity studies performed demonstrate that the constraints on the range of the inversion are very important to minimize the uncertainties, and therefore estimates of reff can be obtained with uncertainties less than 30% and of V with uncertainties below 40%. The LE technique is applied to data acquired at five AERONET sites influenced by different aerosol types and the retrievals are compared with the results of the operational AERONET code. Good agreement between the two techniques is obtained when the fine mode predominates, while for coarse mode cases the LE results systematically underestimate both reff and V. The highest differences are found for cases where no mode predominates. To minimize these biases, correction functions are developed using the multi-year database of observations at selected sites, where the AERONET retrieval is used as the reference. The derived corrections are tested using data from 18 other AERONET stations offering a range of aerosol types. After correction, the LE retrievals provide better agreement with AERONET for all the sites considered. Finally, the LE approach developed here is applied to AERONET and star-photometry measurements at the city of Granada (Spain) to obtain day-to-night time-evolution of columnar aerosol microphysical properties.


2019 ◽  
Vol 12 (8) ◽  
pp. 4619-4641 ◽  
Author(s):  
Myungje Choi ◽  
Hyunkwang Lim ◽  
Jhoon Kim ◽  
Seoyoung Lee ◽  
Thomas F. Eck ◽  
...  

Abstract. Recently launched multichannel geostationary Earth orbit (GEO) satellite sensors, such as the Geostationary Ocean Color Imager (GOCI) and the Advanced Himawari Imager (AHI), provide aerosol products over East Asia with high accuracy, which enables the monitoring of rapid diurnal variations and the transboundary transport of aerosols. Most aerosol studies to date have used low Earth orbit (LEO) satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), with a maximum of one or two overpass daylight times per day from midlatitudes to low latitudes. Thus, the demand for new GEO observations with high temporal resolution and improved accuracy has been significant. In this study the latest versions of aerosol optical depth (AOD) products from three LEO sensors – MODIS (Dark Target, Deep Blue, and MAIAC), MISR, and the Visible/Infrared Imager Radiometer Suite (VIIRS), along with two GEO sensors (GOCI and AHI), are validated, compared, and integrated for a period during the Korea–United States Air Quality Study (KORUS-AQ) field campaign from 1 May to 12 June 2016 over East Asia. The AOD products analyzed here generally have high accuracy with high R (0.84–0.93) and low RMSE (0.12–0.17), but their error characteristics differ according to the use of several different surface-reflectance estimation methods. High-accuracy near-real-time GOCI and AHI measurements facilitate the detection of rapid AOD changes, such as smoke aerosol transport from Russia to Japan on 18–21 May 2016, heavy pollution transport from China to the Korean Peninsula on 25 May 2016, and local emission transport from the Seoul Metropolitan Area to the Yellow Sea in South Korea on 5 June 2016. These high-temporal-resolution GEO measurements result in more representative daily AOD values and make a greater contribution to a combined daily AOD product assembled by median value selection with a 0.5∘×0.5∘ grid resolution. The combined AOD is spatially continuous and has a greater number of pixels with high accuracy (fraction within expected error range of 0.61) than individual products. This study characterizes aerosol measurements from LEO and GEO satellites currently in operation over East Asia, and the results presented here can be used to evaluate satellite measurement bias and air quality models.


2020 ◽  
Vol 86 (12) ◽  
pp. 767-774
Author(s):  
Wei Chen ◽  
Ge Song ◽  
Haozhong Wang ◽  
Haimeng Zhao ◽  
Jianfang Zhu ◽  
...  

Sky polarization patterns are a relatively new and interesting field of polarized remote sensing. However, most current research mainly focuses on Rayleigh scattering or different conditions of aerosol optical depth. In this study, the sky downward polarization patterns are calculated for both degree of linear polarization and angle of polarization with scattering and absorbing aerosol situations. When coarse-mode aerosol changes from scattering to absorbing, the decreasing trend in the sky downward degree-of-linear-polarization largely slows down when aerosol optical depth increases. For fine-mode aerosol, on the other hand, the change of pattern is not sensitive to the absorbing property of aerosol. Sky downward angle-of-polarization patterns for different levels of aerosol optical depth and aerosol modes are similar, with little change. The results suggest that in order to accurately use sky polarization for remote sensing or bionic navigation, it is necessary to characterize aerosol microphysical properties first, especially when coarse absorbing aerosol exists.


2016 ◽  
Vol 16 (21) ◽  
pp. 13853-13884 ◽  
Author(s):  
Aristeidis K. Georgoulias ◽  
Georgia Alexandri ◽  
Konstantinos A. Kourtidis ◽  
Jos Lelieveld ◽  
Prodromos Zanis ◽  
...  

Abstract. This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000–December 2012) and Aqua (July 2002–December 2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ∼ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ∼ 51, ∼ 34 and ∼ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ∼ 40, ∼ 34 and ∼ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.


2021 ◽  
Vol 13 (12) ◽  
pp. 2376
Author(s):  
Lijuan Chen ◽  
Ying Fei ◽  
Ren Wang ◽  
Peng Fang ◽  
Jiamei Han ◽  
...  

High temporal resolution aerosol optical depth (AOD) products are very important for the studies of atmospheric environment and climate change. Geostationary Ocean Color Imager (GOCI) is a suitable data source for AOD retrieval, as it can monitor hourly aerosol changes and make up for the low temporal resolution deficiency of polar orbiting satellite. In this study, we proposed an algorithm for retrieving high temporal resolution AOD using GOCI data and then applied the algorithm in the Yangtze River Delta, a typical region suffering severe air pollution issues. Based on Moderate-resolution Imaging Spectroradiometer (MODIS) surface reflectance determined by MODIS V5.2 algorithm and MODIS Bidirectional Reflectance Distribution Function (BRDF) data, after spectral conversion between MODIS and GOCI, the GOCI surface reflectance at different solar angles were obtained and used to retrieve AOD. Five indicators including correlation coefficient (R), significant level of the correlation (p value), mean absolute error (MAE), mean relative error (MRE) and root mean square error (RMSE) were employed to analyze the errors between the Aerosol Robotic Network (AERONET) observed AOD and the GOCI retrieved AOD. The results showed that the GOCI AOD retrieved by the continental aerosol look-up table was consistent with the AERONET AOD (R > 0.7, p ≤ 0.05). The highest R value of Taihu Station and Xuzhou CUMT Station are both 0.84 (8:30 a.m.); the minimum RMSE at Taihu and Xuzhou-CUMT stations were 0.2077 (11:30 a.m.) and 0.1937 (10:30 a.m.), respectively. Moreover, the results suggested that the greater the solar angle of the GOCI sensor, the higher the AOD retrieval accuracy, while the retrieved AOD at noon exhibited the largest error as assessed by MAE and MRE. We concluded that the inaccurate estimation of surface reflectance was the root cause of the retrieval errors. This study has implications in providing a deep understanding of the effects of solar angle changes on retrieving AOD using GOCI.


2016 ◽  
Author(s):  
Aristeidis K. Georgoulias ◽  
Georgia Alexandri ◽  
Konstantinos A. Kourtidis ◽  
Jos Lelieveld ◽  
Prodromos Zanis ◽  
...  

Abstract. This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra (3/2000–12/2012) and Aqua (7/2002–12/2012) satellite instruments. For this purpose, a 0.1°×0.1° gridded MODIS dataset was compiled and validated against AERONET sunphotometric observations. The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium sized cities, industrial zones, and power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in Central and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/oceanic areas, respectively. Overall, anthropogenic aerosols, dust and fine mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.


2019 ◽  
Author(s):  
Myungje Choi ◽  
Hyunkwang Lim ◽  
Jhoon Kim ◽  
Seoyoung Lee ◽  
Thomas F. Eck ◽  
...  

Abstract. Recently launched multi-channel geostationary-Earth-orbit (GEO) satellite sensors such as the Geostationary Ocean Color Imager (GOCI) and the Advanced Himawari Imager (AHI) provide aerosol products over East Asia with high accuracy, which enables the monitoring of rapid diurnal variations and the transboundary transport of aerosols. Most aerosol studies to date have used low-Earth-orbit (LEO) satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) with a maximum of one or two overpass daylight times per day at mid- to low latitudes. Thus, the demand for new GEO observations with high temporal resolution and improved accuracy has been significant. In this study the aerosol optical depth (AOD) products from three LEO sensors – MODIS, MISR, and the Visible/Infrared Imager Radiometer Suite (VIIRS) – along with two GEO sensors – GOCI and AHI – are validated, compared and integrated for the period during the Korea–United Sates Air Quality Study (KORUS-AQ) field campaign from 1 May to 12 June 2016 over East Asia. The AOD products analyzed here generally have high accuracy, but their error characteristics differ according to the use of several different surface-reflectance estimation methods plus differences in cloud screening. High-accuracy near-real-time GOCI and AHI measurements facilitate the detection of rapid AOD changes, such as smoke aerosol transport from Russia to Japan on 18–21 May 2016, heavy pollution transport from China to Korea on 25 May 2016, and local emission transport from the Seoul Metropolitan Area to the Yellow Sea in Korea on 5 June 2016. These high-temporal-resolution GEO measurements result in more-representative daily AOD values and make a greater contribution to a combined daily AOD product assembled by median-value selection with a 0.5° × 0.5° grid resolution. The combined AOD is more spatially continuous and of higher accuracy than the individual products. This study characterizes aerosol measurements from LEO and GEO satellites currently in operation over East Asia, and results presented here can be used to evaluate satellite measurement bias and air-quality models.


2018 ◽  
Vol 10 (8) ◽  
pp. 1169 ◽  
Author(s):  
Xiaoli Su ◽  
Junji Cao ◽  
Zhengqiang Li ◽  
Kaitao Li ◽  
Hua Xu ◽  
...  

A thorough understanding of aerosol optical properties and their spatio-temporal variability are required to accurately evaluate aerosol effects in the climate system. In this study, a multi-year study of aerosol optical and microphysical properties was firstly performed in Xi’an based on three years of sun photometer remote sensing measurements from 2012 to 2015. The multi-year average of aerosol optical depth (AOD) at 440 nm was about 0.88 ± 0.24 (mean ± SD), while the averaged Ångström Exponent (AE) between 440 and 870 nm was 1.02 ± 0.15. The mean value of single scattering albedo (SSA) was around 0.89 ± 0.03. Aerosol optical depth and AE showed different seasonal variation patterns. Aerosol optical depth was slightly higher in winter (0.99 ± 0.36) than in other seasons (~0.85 ± 0.20), while AE showed its minimum in spring (0.85 ± 0.05) due to the impact of dust episodes. The seasonal variations of volume particle size distribution, spectral refractive index, SSA, and asymmetry factor were also analyzed to characterize aerosols over this region. Based on the aerosol products derived from sun photometer measurements, the classification of aerosol types was also conducted using two different methods in this region. Results show that the dominant aerosol types are absorbers in all seasons, especially in winter, demonstrating the strong absorptivity of aerosols in Xi’an.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Evgueni Kassianov ◽  
Erol Cromwell ◽  
Justin Monroe ◽  
Laura D. Riihimaki ◽  
Connor Flynn ◽  
...  

AbstractAerosol optical depth (AOD) characterizes the aerosol burden in the atmosphere, while its wavelength dependence is a sign of particle size. Long-term records of wavelength-resolved AOD with high quality and suitable continuity are required for climate change assessment. Typically, climate-related studies use AOD products provided by several, and perhaps different, ground-based instruments. The measurements from these instruments often have different accuracy and temporal resolution. To preserve the advantages of these products (high quality) and to reduce their disadvantages (patchy records), we generate a merged dataset obtained from four instruments deployed at a US continental site in which a nearly-continuous AOD record is found at two wavelengths (500 and 870 nm) with high quality and high temporal resolution (1-min) for a 21-yr period (1997–2018). The combined dataset addresses: (1) varying data quality and resolution mismatch of the individual AOD records, and (2) the uncertainty of the merged AOD and its relevance for user-specified needs. The generated dataset will be beneficial for a wide range of applications including aerosol-radiation interactions.


2017 ◽  
Author(s):  
Javier López-Solano ◽  
Alberto Redondas ◽  
Thomas Carlund ◽  
Juan J. Rodriguez-Franco ◽  
Henri Diémoz ◽  
...  

Abstract. The high spatial and temporal variability of aerosols make networks capable of measuring their properties in near real time of high scientific interest. In this work we present and discuss results of an aerosol optical depth algorithm to be used in the European Brewer Network, which provides data in near real time of more than 30 spectrophotometers located from Tamanrasset (Algeria) to Kangerlussuaq (Greenland). Using data from the Brewer Intercomparison Campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sunphotometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and a stability similar to that of the ozone measurements for well-maintained instruments. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of aerosols.


Sign in / Sign up

Export Citation Format

Share Document