scholarly journals Co-benefits of global and regional greenhouse gas mitigation on U.S. air quality in 2050

2016 ◽  
Author(s):  
Yuqiang Zhang ◽  
Jared H. Bowden ◽  
Zachariah Adelman ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
...  

Abstract. Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change, but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation on U.S. air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for U.S. air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources, and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation versus mitigation in foreign countries. We use the WRF model to dynamically downscale future global climate to the regional scale, the SMOKE program to directly process global anthropogenic emissions into the regional domain, and we provide dynamical boundary conditions from global simulations to the regional CMAQ model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern U.S. (ranging from 0.6–1.0 μg m-3) than the west (0–0.4 μg m-3) for PM2.5, with an average of 0.47 μg m-3 over U.S.; for O3, the total co-benefits are more uniform at 2–5 ppb with U.S. average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions of co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the U.S. O3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to the co-benefits are comparable to that from the domestic reductions, especially for O3, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the U.S. can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.

2016 ◽  
Vol 16 (15) ◽  
pp. 9533-9548 ◽  
Author(s):  
Yuqiang Zhang ◽  
Jared H. Bowden ◽  
Zachariah Adelman ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
...  

Abstract. Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m−3) than the west (0–0.4 µg m−3) for fine particulate matter (PM2.5), with an average of 0.47 µg m−3 over the US; for O3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to co-benefits can be substantial, with foreign O3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the US can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.


2015 ◽  
Vol 49 (13) ◽  
pp. 7580-7588 ◽  
Author(s):  
Fernando Garcia-Menendez ◽  
Rebecca K. Saari ◽  
Erwan Monier ◽  
Noelle E. Selin

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1269
Author(s):  
Suresh K. Kakraliya ◽  
Hanuman S. Jat ◽  
Tek B. Sapkota ◽  
Ishwar Singh ◽  
Manish Kakraliya ◽  
...  

Conventional rice–wheat (RW) rotation in the Indo-Gangetic Plains (IGP) of South Asia is tillage, water, energy, and capital intensive. Coupled with these, crop residue burning contributes significantly to greenhouse gas (GHG) emission and environmental pollution. So, to evaluate the GHG mitigation potential of various climate-smart agricultural practices (CSAPs), an on-farm research trial was conducted during 2014–2017 in Karnal, India. Six management scenarios (portfolios of practices), namely, Sc1—business as usual (BAU)/conventional tillage (CT) without residue, Sc2—CT with residue, Sc3—reduced tillage (RT) with residue + recommended dose of fertilizer (RDF), Sc4—RT/zero tillage (ZT) with residue + RDF, Sc5—ZT with residue + RDF + GreenSeeker + Tensiometer, and Sc6—Sc5 + nutrient-expert tool, were included. The global warming potential (GWP) of the RW system under CSAPs (Sc4, Sc5, and Sc6) and the improved BAU (Sc2 and Sc3) were 33–40% and 4–26% lower than BAU (7653 kg CO2 eq./ha/year), respectively. This reflects that CSAPs have the potential to mitigate GWP by ~387 metric tons (Mt) CO2 eq./year from the 13.5 Mha RW system of South Asia. Lower GWP under CSAPs resulted in 36–44% lower emission intensity (383 kg CO2 eq./Mg/year) compared to BAU (642 kg CO2 eq./Mg/year). Meanwhile, the N-factor productivity and eco-efficiency of the RW system under CSAPs were 32–57% and 70–105% higher than BAU, respectively, which reflects that CSAPs are more economically and environmentally sustainable than BAU. The wheat yield obtained under various CSAPs was 0.62 Mg/ha and 0.84 Mg/ha higher than BAU during normal and bad years (extreme weather events), respectively. Thus, it is evident that CSAPs can cope better with climatic extremes than BAU. Therefore, a portfolio of CSAPs should be promoted in RW belts for more adaptation and climate change mitigation.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 29
Author(s):  
Wen-Tien Tsai ◽  
Yu-Quan Lin

A reduction in the energy-related emissions of air pollutants would not only mitigate climate change but would also improve local air quality and public health. This paper aimed to analyze the trends of air quality index (AQI) and greenhouse gas (GHG) emissions in Taiwan by using the latest official statistics. In addition, this study also summarized regulatory measures for controlling air pollution from the energy sector with relevance to sustainable development goals (SDGs). With the joint efforts by the public and private sectors, the change in the total GHG emissions did not vary much with the exception of 2009, ranging from 250 to 272 million metric tons of CO2 equivalent from 2005 through 2019. Based on the data on AQI, the percentage of AQI by station-day with AQI > 100 has decreased from 18.1% in 2017 to 10.1% in 2020, indicating a decreasing trend for all criteria air pollutants. On the other hand, the coronavirus disease (COVID-19) lockdown, in 2019, has positively impacted Taiwan’s urban air quality, which was consistent with those observed in other countries. This consistent situation could be attributed to the climate change mitigation policies and promotional actions under the revised Air Pollution Control Act and the Greenhouse Gas Reduction and Management Act of 2015. In response to the SDGslaunched by the Taiwan government in 2018, achieving the relevant targets by 2030 can be prospective.


2010 ◽  
Vol 4 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Andrew K. Evers ◽  
Amanda Bambrick ◽  
Simon Lacombe ◽  
Michael C. Dougherty ◽  
Matthias Peichl ◽  
...  

Increasing awareness of global climate change has pressured agricultural producers to reduce greenhouse gas (GHG) emissions while at the same time encouraging them to maintain food production needed for an increasing population. Tree-based intercropping (TBI) systems are believed to be useful in climate change mitigation, especially in temperate regions, due to their potential to reduce GHG emissions from agricultural practices. The purpose of this paper is therefore to review some of the research conducted on GHG mitigation in TBI in southern Ontario and Quebec, Canada. Research conducted at the University of Guelph Agroforestry Research Station (GARS) indicated that TBI systems had the potential to lower N2O emissions by 1.2 kg ha-1 y-1 compared to a conventional agricultural field cropping system. Trees can assimilate residual nitrate (NO3-) left from nitrogen (N) fertilizer applications, thereby leaving less NO3- available for denitrification and subsequently reducing N2O losses. Carbon sequestration is also enhanced in TBI systems as carbon (C) is stored in both above and below ground tree components. Soil Organic Carbon (SOC) is higher in systems incorporating trees because tree litter decomposes slowly, therefore reducing CO2 loss to the atmosphere. The C sequestration potential of TBI systems and the possibility to include fast-growing tree species for bioenergy production in TBI systems make it a valid solution to mitigate climate change in temperate regions. The opportunity of C trading credits to offset the costs of implementing a TBI system and provide additional income to farmers could facilitate the adoption of TBI amidst agricultural producers in temperate regions.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


2015 ◽  
Vol 15 (21) ◽  
pp. 31385-31432
Author(s):  
Y. H. Lee ◽  
D. T. Shindell ◽  
G. Faluvegi ◽  
R. W. Pinder

Abstract. We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m−3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m−2 over the globe; ~ 0.8 W m−2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m−2 due to positive aerosol direct and indirect forcing, while the global mean total RF is −0.06 W m−2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.


2019 ◽  
pp. 599-639
Author(s):  
Elizabeth Fisher ◽  
Bettina Lange ◽  
Eloise Scotford

This chapter examines the fast-moving area of law relating to climate change. This includes a considerable body of public international law, from the UN Framework Convention on Climate Change to the legally innovative Paris Agreement 2015. The chapter also considers legal developments at the EU and UK levels, which both contain a rich body of climate law and policy. The EU and the UK are both seen as ‘world leaders’ in climate law and policy. In EU law, this is due to the EU greenhouse gas emissions trading scheme and the EU’s leadership in advocating ambitious greenhouse gas mitigation targets and in implementing these targets flexibly across the EU Member States through a range of regulatory mechanisms. The UK introduced path-breaking climate legislation in the Climate Change Act 2008, which provided an inspiring model of climate governance, legally entrenching long-term planning for both mitigation and adaptation. The chapter concludes with an exploration of climate litigation, a new and growing field of inquiry.


2012 ◽  
Vol 143 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Gordon Waitt ◽  
Carol Farbotko ◽  
Barbara Criddle

The print media have facilitated multiple types of claim-making and an oppositional climate change politics. Drawing on arguments about the social construction of geographical scale as a category for understanding media practice, this article examines such politics. We focus on the Illawarra Mercury, the only daily newspaper in the Illawarra region of New South Wales, to showcase exactly how this tabloid newspaper engages readers in a scalar politics of climate change. We argue that a regional scalar politics shapes the framing of emissions in the Illawarra Mercury. A key question organising this article concerns the way in which geographical scale is invoked, and reproduced, in this newspaper to structure a certain rationale in reporting on emissions from one of Australia's largest greenhouse gas emitters, the Port Kembla Steelworks. The argument is that the regional scale is evoked as a pre-given, natural and contained entity to justify why the steelworks need not shoulder greenhouse gas emissions reductions. We argue that a better understanding of scalar politics is integral to explain how responsibility for emissions is shifted elsewhere.


Sign in / Sign up

Export Citation Format

Share Document