scholarly journals Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1269
Author(s):  
Suresh K. Kakraliya ◽  
Hanuman S. Jat ◽  
Tek B. Sapkota ◽  
Ishwar Singh ◽  
Manish Kakraliya ◽  
...  

Conventional rice–wheat (RW) rotation in the Indo-Gangetic Plains (IGP) of South Asia is tillage, water, energy, and capital intensive. Coupled with these, crop residue burning contributes significantly to greenhouse gas (GHG) emission and environmental pollution. So, to evaluate the GHG mitigation potential of various climate-smart agricultural practices (CSAPs), an on-farm research trial was conducted during 2014–2017 in Karnal, India. Six management scenarios (portfolios of practices), namely, Sc1—business as usual (BAU)/conventional tillage (CT) without residue, Sc2—CT with residue, Sc3—reduced tillage (RT) with residue + recommended dose of fertilizer (RDF), Sc4—RT/zero tillage (ZT) with residue + RDF, Sc5—ZT with residue + RDF + GreenSeeker + Tensiometer, and Sc6—Sc5 + nutrient-expert tool, were included. The global warming potential (GWP) of the RW system under CSAPs (Sc4, Sc5, and Sc6) and the improved BAU (Sc2 and Sc3) were 33–40% and 4–26% lower than BAU (7653 kg CO2 eq./ha/year), respectively. This reflects that CSAPs have the potential to mitigate GWP by ~387 metric tons (Mt) CO2 eq./year from the 13.5 Mha RW system of South Asia. Lower GWP under CSAPs resulted in 36–44% lower emission intensity (383 kg CO2 eq./Mg/year) compared to BAU (642 kg CO2 eq./Mg/year). Meanwhile, the N-factor productivity and eco-efficiency of the RW system under CSAPs were 32–57% and 70–105% higher than BAU, respectively, which reflects that CSAPs are more economically and environmentally sustainable than BAU. The wheat yield obtained under various CSAPs was 0.62 Mg/ha and 0.84 Mg/ha higher than BAU during normal and bad years (extreme weather events), respectively. Thus, it is evident that CSAPs can cope better with climatic extremes than BAU. Therefore, a portfolio of CSAPs should be promoted in RW belts for more adaptation and climate change mitigation.

2016 ◽  
Vol 16 (15) ◽  
pp. 9533-9548 ◽  
Author(s):  
Yuqiang Zhang ◽  
Jared H. Bowden ◽  
Zachariah Adelman ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
...  

Abstract. Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m−3) than the west (0–0.4 µg m−3) for fine particulate matter (PM2.5), with an average of 0.47 µg m−3 over the US; for O3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to co-benefits can be substantial, with foreign O3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the US can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.


2016 ◽  
Author(s):  
Yuqiang Zhang ◽  
Jared H. Bowden ◽  
Zachariah Adelman ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
...  

Abstract. Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change, but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation on U.S. air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for U.S. air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources, and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation versus mitigation in foreign countries. We use the WRF model to dynamically downscale future global climate to the regional scale, the SMOKE program to directly process global anthropogenic emissions into the regional domain, and we provide dynamical boundary conditions from global simulations to the regional CMAQ model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern U.S. (ranging from 0.6–1.0 μg m-3) than the west (0–0.4 μg m-3) for PM2.5, with an average of 0.47 μg m-3 over U.S.; for O3, the total co-benefits are more uniform at 2–5 ppb with U.S. average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions of co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the U.S. O3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to the co-benefits are comparable to that from the domestic reductions, especially for O3, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the U.S. can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.


2010 ◽  
Vol 4 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Andrew K. Evers ◽  
Amanda Bambrick ◽  
Simon Lacombe ◽  
Michael C. Dougherty ◽  
Matthias Peichl ◽  
...  

Increasing awareness of global climate change has pressured agricultural producers to reduce greenhouse gas (GHG) emissions while at the same time encouraging them to maintain food production needed for an increasing population. Tree-based intercropping (TBI) systems are believed to be useful in climate change mitigation, especially in temperate regions, due to their potential to reduce GHG emissions from agricultural practices. The purpose of this paper is therefore to review some of the research conducted on GHG mitigation in TBI in southern Ontario and Quebec, Canada. Research conducted at the University of Guelph Agroforestry Research Station (GARS) indicated that TBI systems had the potential to lower N2O emissions by 1.2 kg ha-1 y-1 compared to a conventional agricultural field cropping system. Trees can assimilate residual nitrate (NO3-) left from nitrogen (N) fertilizer applications, thereby leaving less NO3- available for denitrification and subsequently reducing N2O losses. Carbon sequestration is also enhanced in TBI systems as carbon (C) is stored in both above and below ground tree components. Soil Organic Carbon (SOC) is higher in systems incorporating trees because tree litter decomposes slowly, therefore reducing CO2 loss to the atmosphere. The C sequestration potential of TBI systems and the possibility to include fast-growing tree species for bioenergy production in TBI systems make it a valid solution to mitigate climate change in temperate regions. The opportunity of C trading credits to offset the costs of implementing a TBI system and provide additional income to farmers could facilitate the adoption of TBI amidst agricultural producers in temperate regions.


2017 ◽  
pp. 78
Author(s):  
Harri Moora ◽  
Evelin Urbel-Piirsalu ◽  
Viktoria Voronova

Waste management has an influence on the greenhouse gas (GHG) formation. The emissions of greenhouse gases vary between the EU countries depending on waste treatment practices and other regional factors such us composition of waste. The aim of this paper was to examine, from a life-cycle perspective, Municipal Solid Waste (MSW) management in the context of greenhouse gas formation and to evaluate the possible reduction of climate change potential of alternative waste management options in Estonia. The paper summarises the results of a case study in Estonia, assessing the climate change impact by 2020 in terms of net greenhouse gas emissions from two possible management scenarios. As a result it can be concluded that better management of municipal waste and diversion of municipal waste away from landfills could significantly reduce the emissions of GHG and, if high rates of recycling and incineration with energy recovery are attained, the net greenhouse gas emissions may even become negative. It means that these waste management options can partly offset the emissions that occurred when the products were manufactured from virgin materials and energy was produced from fossil fuels. This is especially important concerning the climate change impact.


2019 ◽  
pp. 599-639
Author(s):  
Elizabeth Fisher ◽  
Bettina Lange ◽  
Eloise Scotford

This chapter examines the fast-moving area of law relating to climate change. This includes a considerable body of public international law, from the UN Framework Convention on Climate Change to the legally innovative Paris Agreement 2015. The chapter also considers legal developments at the EU and UK levels, which both contain a rich body of climate law and policy. The EU and the UK are both seen as ‘world leaders’ in climate law and policy. In EU law, this is due to the EU greenhouse gas emissions trading scheme and the EU’s leadership in advocating ambitious greenhouse gas mitigation targets and in implementing these targets flexibly across the EU Member States through a range of regulatory mechanisms. The UK introduced path-breaking climate legislation in the Climate Change Act 2008, which provided an inspiring model of climate governance, legally entrenching long-term planning for both mitigation and adaptation. The chapter concludes with an exploration of climate litigation, a new and growing field of inquiry.


2015 ◽  
Vol 7 (3) ◽  
pp. 1326-1338 ◽  
Author(s):  
Brent Boehlert ◽  
Kenneth M. Strzepek ◽  
Steven C. Chapra ◽  
Charles Fant ◽  
Yohannes Gebretsadik ◽  
...  

2018 ◽  
Vol 47 (2) ◽  
pp. 195-200
Author(s):  
Sarah Cline ◽  
Sahan T. M. Dissanayake

Climate change will likely impact the ecosystem services and biodiversity generated from conserved land. Land conservation can also play a significant role in achieving cost-effective mitigation of greenhouse gas emissions. In this special issue we feature seven papers from the 2017 NAREA Workshop, “Climate Change and Land Conservation and Restoration: Advances in Economics Methods and Policies for Adaptation and Mitigation.” The articles include papers furthering the methodological frontier; portfolio optimization, dynamic rangeland stocking, and global timber harvest models, and those highlighting innovative applications; climate smart agricultural practices in Nigeria and Vietnam, welfare impacts on birding, and carbon and albedo pricing.


Author(s):  
Michael Faure ◽  
Marjan Peeters

In view of the need to curb greenhouse gases, the question arises as to the functions of liability in providing effective incentives for emitters in order to change their behavior. Liability for emitting greenhouse gases exists (or can exist) in the area of public law and private law and can be subdivided into international, administrative, and criminal liability (public law liabilities) and tort law liability (private law liability). Actions for holding individual and legal persons (such as states, authorities, and companies) liable can, depending on the specific jurisdiction, be triggered by citizens but also by legal persons, such as authorities, companies, and non-governmental organizations (NGOs), particularly environmental NGOs. The central question in this article is how climate liability is arranged under public law and whether there would be any role for climate liability to play under private law, thereby applying a legal and economic methodology. That so-called law and economics doctrine is a useful approach as it has given a lot of attention, for example, to the different functions of specific legal instruments (more particularly regulation, including taxation and emissions trading and tort law liability) for mitigating greenhouse gases. Meanwhile, in practice, various examples can be identified whereby tort law liability is used as a complement to greenhouse gas regulation. This specific use of tort liability is analyzed in the light of the law and economics literature, thereby pointing at prospects but also at remaining core questions. The success of tort law actions will most likely greatly depend on the (lack of) ambition vested into the emissions regulations at international and national levels. One of the exciting questions for the near future is to what extent judges feel able to step into the regulation of the climate change problem, in an ex ante way. The most difficult cases are obviously those where a regulatory system concerning greenhouse gas mitigation has been put in place and where the court system is strong, but where particular groups consider the regulations to be insufficient.


Sign in / Sign up

Export Citation Format

Share Document