scholarly journals Supplementary material to "Tagged tracer simulations of black carbon in the Arctic: Transport, source contributions, and budget"

Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  
2017 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry-transport model GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and found that the simulated seasonal variations were improved by implementing an aging parameterization and reducing the wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Okhotsk Sea and East Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130°–180° E and 3–8 km altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km altitude due to uplifting during the long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was smaller than that from other large source regions such as Europe, Russia and North America. However, the East Asian contribution was most important for BC in the middle troposphere (41 %) and BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of the Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


2022 ◽  
Author(s):  
Hitoshi Matsui ◽  
Tatsuhiro Mori ◽  
Sho Ohata ◽  
Nobuhiro Moteki ◽  
Naga Oshima ◽  
...  

Abstract. Black carbon (BC) particles in the Arctic contribute to rapid warming of the Arctic by heating the atmosphere and snow and ice surfaces. Understanding the source contributions to Arctic BC is therefore important, but they are not well understood, especially those for atmospheric and snow radiative effects. Here we estimate simultaneously the source contributions of Arctic BC to near-surface and vertically integrated atmospheric BC mass concentrations (MBC_SRF and MBC_COL), BC deposition flux (MBC_DEP), and BC radiative effects at the top of the atmosphere and snow surface (REBC_TOA and REBC_SNOW), and show that the source contributions to these five variables are highly different. In our estimates, Siberia makes the largest contribution to MBC_SRF, MBC_DEP, and REBC_SNOW in the Arctic (defined as > 70° N), accounting for 70 %, 53 %, and 43 %, respectively. In contrast, Asia’s contributions to MBC_COL and REBC_TOA are largest, accounting for 38 % and 45 %, respectively. In addition, the contributions of biomass burning sources are larger (24−34 %) to MBC_DEP, REBC_TOA, and REBC_SNOW, which are highest from late spring to summer, and smaller (4.2−14 %) to MBC_SRF and MBC_COL, whose concentrations are highest from winter to spring. These differences in source contributions to these five variables are due to seasonal variations in BC emission, transport, and removal processes and solar radiation, as well as to differences in radiative effect efficiency (radiative effect per unit BC mass) among sources. Radiative effect efficiency varies by a factor of up to 4 among sources (1465−5439 W g–1) depending on lifetimes, mixing states, and heights of BC and seasonal variations of emissions and solar radiation. As a result, source contributions to radiative effects and mass concentrations (i.e., REBC_TOA and MBC_COL, respectively) are substantially different. The results of this study demonstrate the importance of considering differences in the source contributions of Arctic BC among mass concentrations, deposition, and atmospheric and snow radiative effects for accurate understanding of Arctic BC and its climate impacts.


2019 ◽  
Author(s):  
Hans-Werner Jacobi ◽  
Friedrich Obleitner ◽  
Sophie Da Costa ◽  
Patrick Ginot ◽  
Kostas Eleftheriadis ◽  
...  

2019 ◽  
Author(s):  
Chunmao Zhu ◽  
Yugo Kanaya ◽  
Masayuki Takigawa ◽  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
...  

2019 ◽  
Vol 5 (2) ◽  
pp. eaau8052 ◽  
Author(s):  
P. Winiger ◽  
T. E. Barrett ◽  
R. J. Sheesley ◽  
L. Huang ◽  
S. Sharma ◽  
...  

Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.


Sign in / Sign up

Export Citation Format

Share Document