scholarly journals A review of "Characterization of the cloud microphysical and optical properties and aerosol-cloud interaction in the Arctic from in situ ground-based measurements during the CLIMSLIP-3 NyA campaign, Svalbard" by Guyot et al. (acp-2017-672)

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Author(s):  
Gwennolé Guyot ◽  
Frans Olofson ◽  
Peter Tunved ◽  
Christophe Gourbeyre ◽  
Guy Fevbre ◽  
...  

Abstract. This study will focus on cloud microphysical and optical characterization of three different types of episodes encountered during the ground based CLIMSLIP-NyA campaign performed in Ny-Alesund, Svalbard: the Mixed Phase Cloud (MPC), snow precipitation and Blowing Snow (BS) events. These in situ cloud measurements will be combined with aerosol measurements and air mass backtrajectory simulations to qualify and parameterize the arctic aerosol cloud interaction and to assess the influence of anthropogenic pollution transported into the Arctic. The results show a cloud bimodal distribution with the droplet mode at 10 µm and the crystal mode centered at 250 µm, for the MPC cases. The precipitation cases presents a crystal distribution centered around 350 µm with mostly of dendritic shape. The BS cases show a higher concentration but smaller crystals, centered between 150 and 200 µm, with mainly irregular crystals. A polluted case, where aerosol properties are influenced by anthropogenic emission from Europe and East Asia, was compared to a clean case with local aerosol sources. These anthropogenic emissions seem to cause higher Black Carbon, aerosol and droplet concentrations, a more pronounced accumulation mode, smaller droplet sizes and a higher activation fraction Fa. Moreover, the activation diameter decreases as the droplet diameter increases and Fa increases showing that smaller particles are activated and droplets grow when the aerosol number decreases. This is in agreement with the first (Twomey) and second (Albrecht) aerosol indirect effect. The quantification of the variations of droplet concentration and size leads to IE (Indirect Effect) and NE (Nucleation Efficiency) coefficients values around 0.2 and 0.43, respectively. These values are close to those found by other studies in the arctic region which confirms these parameterizations of arctic aerosol-cloud interaction in climate models.


2011 ◽  
Vol 11 (12) ◽  
pp. 32921-32964
Author(s):  
S. Mogo ◽  
V. E. Cachorro ◽  
J. F. Lopez ◽  
E. Montilla ◽  
B. Torres ◽  
...  

Abstract. In situ measurements of aerosol optical properties were made in the summer of 2008 at the ALOMAR station facility (69°16 N, 16°00 E), located at a rural site in the north of the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008). Its goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region. The ambient light-scattering coefficient, σs (550 nm), at ALOMAR had a measured hourly mean value of 5.41 Mm−1 (StD = 3.55 Mm−1), and the light-absorption coefficient, σa (550 nm), had a measured hourly mean value of 0.40 Mm−1 (StD = 0.27 Mm−1). The scattering/absorption Ångström exponents, αs,a, are used for a detailed analysis of the variations of the spectral shape of σs,a. Whereas αs demonstrates the presence of two particle sizes corresponding to two types of aerosols, the αa demonstrates only one type of absorbing aerosol particles. Values of αa above 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05), and the relationships of this property to the absorption/scattering coefficients and the Ångström exponents are presented. The concentration of the particles was monitored using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and an ultrafine condensation particle counter (UCPC). The shape of the median size distribution of the particles in the submicrometer fraction was bimodal, and the submicrometer, micrometer and total concentrations presented hourly mean values of 1277 cm3 (StD = 1563 cm3), 1 cm3 (StD = 1 cm3) and 2463 cm3 (StD = 4251 cm3), respectively. The modal correlations were investigated, and the concentration of particles sized between 30 and 100 nm (Aitken mode) are presented as a function of the concentration of the particles sized between 100 and 390 nm (accumulation mode). The optical and the microphysical parameters are related to each other, and the results are presented. The origins and pathways of air masses were examined by computing the back-trajectories in a trajectory model (HYSPLIT). Six geographical sectors were defined to classify the air masses, and, based on the sector classification, the linkage between the air mass origin and the optical parameters was established. Aerosol size distributions were also evaluated in relation to the air masses. The relationships between the air mass origins and other parameters, especially those related to the single scattering albedo, allow us to describe two characteristic situations: northern and western air masses, which had predominantly marine aerosols, presented lower optical parameter values, indicating predominantly coarser and non-absorbent particles; and eastern and southern air masses, in which continental aerosols were predominant, presented higher values for all optical parameters, indicating the presence of smaller absorbent particles.


2013 ◽  
Vol 543 ◽  
pp. 80-83
Author(s):  
Judita Puišo ◽  
Valentinas Baltrušaitis ◽  
Algirdas Lazauskas ◽  
Asta Guobienė ◽  
Igoris Prosyčevas ◽  
...  

Silver nanoparticles and polymethylmethacrylate (PMMA) nanocomposite was preparedin situby photo-induced thermal reduction method. The interfacial interaction of Ag nanoparticles and PMMA polymer is investigated using Fourier transform infrared spectroscopy (FTIR). Optical properties of Ag/PMMA films were characterized by UV-Vis and FTIR absorption spectroscopy. Effects of the UV and heat-treatment time on the formation of silver nanoparticles in PMMA matric matrix were studied in detail. These investigations proposed new nanocomposite structures. They can be defined as plasmonic materials with improved optical properties. Ag/PMMA structures may found a number of technological applications: in optical devices, various plasmonic sensors or even in nanomedicine.


2013 ◽  
Vol 864-867 ◽  
pp. 694-697 ◽  
Author(s):  
Yan Ming Chen ◽  
Hong Wei Jia

ZnO nanoparticles were synthesized by using N, N-dimethylformamide as solvent and poly(styrene-b-butadiene-b-styrene) SBS-OH as stablizer at 100°C through “in situ” reaction process. The optical properties and morphologies for the synthesized ZnO nanoparticles were measured through UV-Vis, PL and TEM methods. The results show that corona-embedded ZnO nanoparticles could be obtained by SBS-OH micelles in polar solvent DMF. The obtained ZnO nanoparticles could give an apparent quantum size confinement effects and PL results show that ZnO nanoparticles could give good luminescence properties.


2011 ◽  
Vol 11 (9) ◽  
pp. 26999-27030 ◽  
Author(s):  
J. Liao ◽  
L. G. Huey ◽  
E. Scheuer ◽  
J. E. Dibb ◽  
R. E. Stickel ◽  
...  

Abstract. A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring time, high latitude troposphere based on aircraft and satellite measurements of BrO and related species. The NASA DC-8 aircraft utilized a chemical ionization mass spectrometry (CIMS) instrument to measure BrO and a mist chamber (MC) to measure soluble bromide. We have determined that the MC detection efficiency to molecular bromine (Br2), hypobromous acid (HOBr), bromine oxide (BrO), and hydrogen bromide (HBr) as soluble bromide (Br−) was 0.9±0.1, 1.06±0.30, 0.4±0.1, and 0.95±0.1, respectively. These efficiency factors were used to estimate soluble bromide levels along the DC-8 flight track of 17 April 2008 from photochemical calculations constrained to in situ BrO measured by CIMS. During this flight, the highest levels of soluble bromide and BrO were observed and atmospheric conditions were ideal for the space-borne observation of BrO. The good agreement (R2 = 0.76; slope = 0.98; intercept = −3.5 pptv) between modeled and observed soluble bromide, when BrO was above detection limit (>2 pptv) under unpolluted conditions (NO < 100 pptv), indicates that the CIMS BrO measurements were consistent with the MC soluble bromide. Tropospheric BrO vertical column densities (BROTROPVCD) derived from CIMS BrO observations compare well with BROTROPVCD from OMI on 17 April 2008.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document