scholarly journals In situ measurements of aerosols optical properties and number size distributions in a subarctic coastal region of Norway

2011 ◽  
Vol 11 (12) ◽  
pp. 32921-32964
Author(s):  
S. Mogo ◽  
V. E. Cachorro ◽  
J. F. Lopez ◽  
E. Montilla ◽  
B. Torres ◽  
...  

Abstract. In situ measurements of aerosol optical properties were made in the summer of 2008 at the ALOMAR station facility (69°16 N, 16°00 E), located at a rural site in the north of the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008). Its goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region. The ambient light-scattering coefficient, σs (550 nm), at ALOMAR had a measured hourly mean value of 5.41 Mm−1 (StD = 3.55 Mm−1), and the light-absorption coefficient, σa (550 nm), had a measured hourly mean value of 0.40 Mm−1 (StD = 0.27 Mm−1). The scattering/absorption Ångström exponents, αs,a, are used for a detailed analysis of the variations of the spectral shape of σs,a. Whereas αs demonstrates the presence of two particle sizes corresponding to two types of aerosols, the αa demonstrates only one type of absorbing aerosol particles. Values of αa above 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05), and the relationships of this property to the absorption/scattering coefficients and the Ångström exponents are presented. The concentration of the particles was monitored using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and an ultrafine condensation particle counter (UCPC). The shape of the median size distribution of the particles in the submicrometer fraction was bimodal, and the submicrometer, micrometer and total concentrations presented hourly mean values of 1277 cm3 (StD = 1563 cm3), 1 cm3 (StD = 1 cm3) and 2463 cm3 (StD = 4251 cm3), respectively. The modal correlations were investigated, and the concentration of particles sized between 30 and 100 nm (Aitken mode) are presented as a function of the concentration of the particles sized between 100 and 390 nm (accumulation mode). The optical and the microphysical parameters are related to each other, and the results are presented. The origins and pathways of air masses were examined by computing the back-trajectories in a trajectory model (HYSPLIT). Six geographical sectors were defined to classify the air masses, and, based on the sector classification, the linkage between the air mass origin and the optical parameters was established. Aerosol size distributions were also evaluated in relation to the air masses. The relationships between the air mass origins and other parameters, especially those related to the single scattering albedo, allow us to describe two characteristic situations: northern and western air masses, which had predominantly marine aerosols, presented lower optical parameter values, indicating predominantly coarser and non-absorbent particles; and eastern and southern air masses, in which continental aerosols were predominant, presented higher values for all optical parameters, indicating the presence of smaller absorbent particles.

2012 ◽  
Vol 12 (13) ◽  
pp. 5841-5857 ◽  
Author(s):  
S. Mogo ◽  
V. E. Cachorro ◽  
J. F. Lopez ◽  
E. Montilla ◽  
B. Torres ◽  
...  

Abstract. In situ measurements of aerosol optical properties and particle size distributions were made in the summer of 2008 at the ALOMAR station facility (69°16' N, 16°00' E), located in a rural site in the north of the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008). Our goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region. Data from 13 June to 26 August 2008 were available and the statistical data for all instruments were calculated based on the hourly averages. The overall data coverage was approximately 72%. The hourly mean values of the light-scattering coefficient, σs, and the light-absorption coefficient, σa, at 550 nm were 5.41 Mm−1 (StD = 3.55 Mm−1) and 0.40 Mm−1 (StD = 0.27 Mm−1), respectively. The scattering/absorption Ångström exponents, αs,a, were used in a detailed analysis of the variations of the spectral shape of σs,a. While αs indicates the presence of two particle sizes corresponding to two types of aerosols, αa indicates only one type of absorbing aerosol particle. αa values greater than 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05), and the relationships between this parameter and the absorption/scattering coefficients and the Ångström exponents are presented. Any absorption value may lead to the lowest values of ω0, whereas only the lowest scattering values were observed in the lowest range of ω0. For a given absorption value, lower ω0 were observed for smaller αs. The submicrometer, micrometer and total concentrations of the particles presented hourly mean values of 1277 cm−3 (StD = 1563 cm−3), 1 cm−3 (StD = 1 cm−3) and 2463 cm−3 (StD = 4251 cm−3), respectively, and the modal correlations were also investigated. The optical and microphysical parameters, as well as their relationship with each other, are reported. σs correlated strongly with the number concentration of accumulation mode particles and more strongly with the micrometer fraction of particles, but weak correlations were observed for the Aitken and nucleation modes. The origins and pathways of the air masses were examined, and based on sector classification, a relationship between the air mass origin, the optical parameters and the size distributions was established. The low values of the optical and microphysical parameters indicate that the predominant regional aerosol is mostly clean and the shape of the size distribution is characterized by bimodal median size distributions. However, the relationships between the air mass origins and the parameters studied allow us to describe two characteristic situations: the one of the northern and western air masses, which were predominantly composed of marine aerosols and presented the lowest optical and microphysical values observed, indicating predominantly non-absorbent and coarser particles; and the one of the eastern and southern air masses, in which continental aerosols were predominant and exhibited higher values for all parameters, indicating the presence of smaller absorbent particles. The north-northeastern air masses presented the strongest Aitken mode, indicating more recently formed particles, and the southeastern air masses presented the strongest accumulation mode (however, the southeastern air masses were the least common, accounting for only 3% of occurrences).


2011 ◽  
Vol 11 (1) ◽  
pp. 2161-2182 ◽  
Author(s):  
E. Montilla ◽  
S. Mogo ◽  
V. Cachorro ◽  
J. Lopez ◽  
A. de Frutos

Abstract. In situ measurements of aerosol optical properties were made in summer 2008 at the ALOMAR station facility (69°16 N, 16°00 E), located at a rural site in the North of the island of Andøya (Vesterålen archipelago), about 300 km north of the Arctic Circle. The extended three months campaign was part of the POLAR-CAT Project of the International Polar Year (IPY-2007-2008), and its goal was to characterize the aerosols of this sub-Arctic area which frequently transporte to the Arctic region. The ambient light-scattering coefficient, σs(550 nm), at ALOMAR had a hourly mean value of 5.412 Mm−1 (StD = 3.545 Mm−1) and the light-absorption coefficient, σa(550 nm), had an hourly mean value of 0.400 Mm−1 (StD = 0.273 Mm−1). The scattering/absorption Ångström exponents, αs,a, are used for detailed analysis of the variations of the spectral shape of σs,a. The single scattering albedo, &omega0, ranges from 0.622 to 0.985 (mean = 0.913, StD = 0.052) and the relation of this property to the absorption/scattering coefficients and the Ångström exponents is presented. The relationships between all the parameters analyzed, mainly those related to the single scattering albedo, allow us to describe the local atmosphere as extremely clean.


2021 ◽  
Vol 21 (19) ◽  
pp. 15023-15063
Author(s):  
Charles A. Brock ◽  
Karl D. Froyd ◽  
Maximilian Dollner ◽  
Christina J. Williamson ◽  
Gregory Schill ◽  
...  

Abstract. In situ measurements of aerosol microphysical, chemical, and optical properties were made during global-scale flights from 2016–2018 as part of the Atmospheric Tomography Mission (ATom). The NASA DC-8 aircraft flew from ∼ 84∘ N to ∼ 86∘ S latitude over the Pacific, Atlantic, Arctic, and Southern oceans while profiling nearly continuously between altitudes of ∼ 160 m and ∼ 12 km. These global circuits were made once each season. Particle size distributions measured in the aircraft cabin at dry conditions and with an underwing probe at ambient conditions were combined with bulk and single-particle composition observations and measurements of water vapor, pressure, and temperature to estimate aerosol hygroscopicity and hygroscopic growth factors and calculate size distributions at ambient relative humidity. These reconstructed, composition-resolved ambient size distributions were used to estimate intensive and extensive aerosol properties, including single-scatter albedo, the asymmetry parameter, extinction, absorption, Ångström exponents, and aerosol optical depth (AOD) at several wavelengths, as well as cloud condensation nuclei (CCN) concentrations at fixed supersaturations and lognormal fits to four modes. Dry extinction and absorption were compared with direct in situ measurements, and AOD derived from the extinction profiles was compared with remotely sensed AOD measurements from the ground-based Aerosol Robotic Network (AERONET); this comparison showed no substantial bias. The purpose of this work is to describe the methodology by which ambient aerosol properties are estimated from the in situ measurements, provide statistical descriptions of the aerosol characteristics of different remote air mass types, examine the contributions to AOD from different aerosol types in different air masses, and provide an entry point to the ATom aerosol database. The contributions of different aerosol types (dust, sea salt, biomass burning, etc.) to AOD generally align with expectations based on location of the profiles relative to continental sources of aerosols, with sea salt and aerosol water dominating the column extinction in most remote environments and dust and biomass burning (BB) particles contributing substantially to AOD, especially downwind of the African continent. Contributions of dust and BB aerosols to AOD were also significant in the free troposphere over the North Pacific. Comparisons of lognormally fitted size distribution parameters to values in the Optical Properties of Aerosols and Clouds (OPAC) database commonly used in global models show significant differences in the mean diameters and standard deviations for accumulation-mode particles and coarse-mode dust. In contrast, comparisons of lognormal parameters derived from the ATom data with previously published shipborne measurements in the remote marine boundary layer show general agreement. The dataset resulting from this work can be used to improve global-scale representation of climate-relevant aerosol properties in remote air masses through comparison with output from global models and assumptions used in retrievals of aerosol properties from both ground-based and satellite remote sensing.


2013 ◽  
Vol 13 (23) ◽  
pp. 11887-11903 ◽  
Author(s):  
R. Väänänen ◽  
E.-M. Kyrö ◽  
T. Nieminen ◽  
N. Kivekäs ◽  
H. Junninen ◽  
...  

Abstract. We investigated atmospheric aerosol particle dynamics in a boreal forest zone in northern Scandinavia. We used aerosol number size distribution data measured with either a differential mobility particle sizer (DMPS) or scanning mobility particle sizer (SMPS) at three stations (Värriö, Pallas and Abisko), and combined these data with the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) air mass trajectory analysis. We compared three approaches: analysis of new particle formation events, investigation of aerosol particle number size distributions during the air mass transport from the ocean to individual stations with different overland transport times, and analysis of changes in aerosol particle number size distributions during the air mass transport from one measurement station to another. Aitken-mode particles were found to have apparent average growth rates of 0.6–0.7 nm h−1 when the air masses traveled over land. Particle growth rates during the new particle formation (NPF) events were 3–6 times higher than the apparent particle growth during the summer period. When comparing aerosol dynamics for different overland transport times between the different stations, no major differences were found, except that in Abisko the NPF events were observed to take place in air masses with shorter overland times than at the other stations. We speculate that this is related to the meteorological differences along the paths of air masses caused by the land surface topology. When comparing air masses traveling in an east-to-west direction with those traveling in a west-to-east direction, clear differences in the aerosol dynamics were seen. Our results suggest that the condensation growth has an important role in aerosol dynamics even when NPF is not evident.


2012 ◽  
Vol 12 (2) ◽  
pp. 4541-4588 ◽  
Author(s):  
B. Quennehen ◽  
A. Schwarzenboeck ◽  
A. Matsuki ◽  
J. F. Burkhart ◽  
A. Stohl ◽  
...  

Abstract. During the POLARCAT-France airborne measurement campaign in spring 2008, several pollution plumes transported from mid-latitude regions were encountered. The study presented here focuses on air masses from two different geographic origins (Europe and Asia) and from 2 different source types (anthropogenic pollution and forest fires). One case study analyses an European air mass, which was sampled during three consecutive day. Modelling of the aerosol particle ageing by coagulation suggests that coagulation cannot solely explain the evolution of the size distributions, which is particularly true for the accumulation mode. Analyses of the aerosol refractory size distributions indicate that the Aitken mode was mostly composed of volatile compounds, while accumulation mode particles desorbed to a refractory mode yielding a modal mean diameter evolving from 48 to 59 nm for the three consecutive days of sampling the same air mass. The single refractory mode suggests an internally mixed aerosol population which is supported from electron microscopy and subsequent EDX analyses of the accumulation mode particles. Another case study focuses on European air masses polluted by fire emissions and Asian air masses with contributions from both biomass burning and anthropogenic emissions. On the one hand, the aerosol size distributions of the European biomass burning plumes are almost mono-modal with most of the particles found in the aged accumulation mode which desorbed uniformly. On the other hand, Asian air masses were more complex because of the mixing of different source contributions related to more variable and multimodal ambient and refractory aerosol size distributions. Electron microscopy illustrated soot-like inclusions in several samples. Within samples attributed to forest fire sources, the chemical signature is highly associated with the presence of potassium, which is characteristic for biomass burning plumes. The particle images suggest an internal mixing of sampled aerosol particles.


2005 ◽  
Vol 5 (1) ◽  
pp. 1067-1114 ◽  
Author(s):  
R. Van Dingenen ◽  
J.-P. Putaud ◽  
S. Martins-Dos Santos ◽  
F. Raes

Abstract. Aerosol physical properties were measured at the Monte Cimone Observatory (Italy) from 1 June till 6 July 2000. The measurement site is located in the transition zone between continental boundary layer and the free troposphere (FT), at the border between the Mediterranean area and Central Europe, and is exposed to a variety of air masses. Sub-micrometer number size distributions, aerosol hygroscopicity at 90% RH, refractory size distribution at 270°C and black carbon mass were continuously measured. Number size distributions and hygroscopic properties indicate that the site is exposed to aged continental air masses, however during daytime it is also affected by upslope winds. The mixing of this transported polluted boundary layer air masses with relatively clean FT air leads to frequent nucleation events around local noon. Night-time size distributions including fine and coarse fractions for each air mass episode have been parameterized by a 3-modal lognormal distribution. Number and volume concentrations in the sub-micrometer modes are strongly affected by the air mass origin, with highest levels in NW-European air masses, versus very clean air in the ''Arctic'' episode. During the dust episode, the coarse mode is clearly enhanced. The observed hygroscopic behavior of the aerosol is consistent with the chemical composition described by Putaud et al. (2004a), but no closure could be made because the hygroscopic properties of the water-soluble organic matter is not known. The data suggest that WSOM is slightly-to-moderately hygroscopic, and that this property may well depend on the air mass origin and history. Although externally mixing is observed in all air masses, the occurrence of ''less'' hygroscopic particles has mostly such a low occurrence rate that the average growth factor distribution mostly appears as a single mode. This is not the case for the dust episode, where the external mixing between less hygroscopic and more hygroscopic particles is very prominent, and indicating clearly the occurrence of a dust accumulation mode, extending down to 50 nm particles, along with an anthropogenic pollution mode. The presented physical measurements finally allow us to provide a partitioning of the sub-µm aerosol in four non-overlapping fractions (soluble + volatile, non-soluble + volatile, refractory + non-BC, BC) which can be roughly associated with separate groups of chemical compounds (ions, organic matter, dust, BC). For what concerns the relative contributions of the fractions, all air masses except the free-tropospheric (FT) and Dust Episodes show a similar composition within the uncertainty of the data. The latter two have a significantly higher refractory fraction, which in the FT air mass is attributed to carbonaceous particles, and in the dust episode to a sub-µm accumulation mode of dust.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Julija Pauraite ◽  
Kristina Plauškaitė ◽  
Vadimas Dudoitis ◽  
Vidmantas Ulevicius

In situ investigation results of aerosol optical properties (absorption and scattering) and chemical composition at an urban background site in Lithuania (Vilnius) are presented. Investigation was performed in May-June 2017 using an aerosol chemical speciation monitor (ACSM), a 7-wavelength Aethalometer and a 3-wavelength integrating Nephelometer. A positive matrix factorisation (PMF) was used for the organic aerosol mass spectra analysis to characterise the sources of ambient organic aerosol (OA). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass-burning OA (BBOA), more and less oxygenated OA (LVOOA and SVOOA, respectively), and local hydrocarbon-like OA (LOA). The average absorption (at 470 nm) and scattering (at 450 nm) coefficients during the entire measurement campaign were 16.59 Mm−1 (standard deviation (SD) = 17.23 Mm−1) and 29.83 Mm−1 (SD = 20.45 Mm−1), respectively. Furthermore, the absorption and scattering Angström exponents (AAE and SAE, respectively) and single-scattering albedo (SSA) were calculated. The average AAE value at 470/660 nm was 0.97 (SD = 0.16) indicating traffic-related black carbon (BCtr) dominance. The average value of SAE (at 450/700 nm) was 1.93 (SD = 0.32) and could be determined by the submicron particle (PM1) dominance versus the supermicron ones (PM > 1 µm). The average value of SSA was 0.62 (SD = 0.13). Several aerosol types showed specific segregation in the SAE versus SSA plot, which underlines different optical properties due to various chemical compositions.


2008 ◽  
Vol 8 (22) ◽  
pp. 6729-6738 ◽  
Author(s):  
N. Kalivitis ◽  
W. Birmili ◽  
M. Stock ◽  
B. Wehner ◽  
A. Massling ◽  
...  

Abstract. Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.


2014 ◽  
Vol 14 (13) ◽  
pp. 7031-7043 ◽  
Author(s):  
G. Titos ◽  
A. Jefferson ◽  
P. J. Sheridan ◽  
E. Andrews ◽  
H. Lyamani ◽  
...  

Abstract. Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.


2008 ◽  
Vol 8 (2) ◽  
pp. 6571-6601
Author(s):  
N. Kalivitis ◽  
W. Birmili ◽  
M. Stock ◽  
B. Wehner ◽  
A. Massling ◽  
...  

Abstract. Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.


Sign in / Sign up

Export Citation Format

Share Document