scholarly journals Climatic and extreme weather variations over Mountainous Jammu and Kashmir, India: Physical explanations based on observations and modelling

Author(s):  
Sumira N. Zaz ◽  
Romshoo Shakil Ahmad ◽  
Ramkumar Thokuluwa Krishnamoorthy ◽  
Yesu Babu Viswanadhapalli

Abstract. The Himalaya is very sensitive to climatic variations because of its fragile environmental and climatic settings. There are clear and strong indicators of climate change reported for the Himalaya, particularly the Jammu and Kashmir region in the western Himalayas. In this study, the detailed characteristics of long and short term as well as localized variations of temperature and precipitation are analysed for six meteorological stations (Gulmarg, Pahalgam, Kokarnag, Quazigund, Kupwara and Srinagar) over Jammu and Kashmir, India for a period of 37 years during 1980–2016 by making use of observed stations data, WRF model downscaled monthly-averaged surface temperature and precipitation and ERA-interim (ERA-I) reanalysis data. The annual and seasonal temperature and precipitation changes were analysed by carrying out the Student's t-test, Mann–Kendall, Spearman Rho and Cumulative deviation statistical tests. The results show an increase of 0.8 °C in average annual temperature over thirty years during 1980–2016 with higher increase in maximum temperature (0.97 °C) compared to minimum temperature (0.76 °C). Analyses of annual mean temperature at all the stations reveal higher rise at high-altitude stations of Pahalgam (1.13 °C) and Gulmarg (1.04 °C) at the confidence level of S = 99 %. Precipitation patterns in the valley show slight decrease in the annual precipitation at Gulmarg and Pahalgam stations at the confidence level of S = 90 %. Seasonal analyses show increase in the winter and spring temperature at all stations at the confidence level of S = 95 % with prominent decrease in spring precipitation at S = 99 %. The present study reveals that variation in temperature and precipitation during northern winter (December–March) has close association with the North Atlantic Oscillation (NAO). Further, the observed temperature data (monthly averaged data for 1980–2016) at all the stations shows good correlation of 0.86 with the results of WRF and therefore the model downscaled simulations can be considered as a valid scientific tool for climatic change studies in this region. Using ERA-I potential vorticities in the upper troposphere over the Jammu and Kashmir region, it is found that the extreme weather event of September 2014 occurred due to the breaking of intense Rossby wave activity over Kashmir. As the wave could drag lots of water vapour from both the Bay of Bengal and Arabian Sea and dump them in the region through wave breaking, resulting in the historical devastating flooding of the whole Kashmir valley in the first week of September 2014 accompanied by the extreme rainfall events measuring more than 620 mm in some parts of the PirPanjal range in the South Kashmir.

2019 ◽  
Vol 19 (1) ◽  
pp. 15-37 ◽  
Author(s):  
Sumira Nazir Zaz ◽  
Shakil Ahmad Romshoo ◽  
Ramkumar Thokuluwa Krishnamoorthy ◽  
Yesubabu Viswanadhapalli

Abstract. The local weather and climate of the Himalayas are sensitive and interlinked with global-scale changes in climate, as the hydrology of this region is mainly governed by snow and glaciers. There are clear and strong indicators of climate change reported for the Himalayas, particularly the Jammu and Kashmir region situated in the western Himalayas. In this study, using observational data, detailed characteristics of long- and short-term as well as localized variations in temperature and precipitation are analyzed for these six meteorological stations, namely, Gulmarg, Pahalgam, Kokarnag, Qazigund, Kupwara and Srinagar during 1980–2016. All of these stations are located in Jammu and Kashmir, India. In addition to analysis of stations observations, we also utilized the dynamical downscaled simulations of WRF model and ERA-Interim (ERA-I) data for the study period. The annual and seasonal temperature and precipitation changes were analyzed by carrying out Mann–Kendall, linear regression, cumulative deviation and Student's t statistical tests. The results show an increase of 0.8 ∘C in average annual temperature over 37 years (from 1980 to 2016) with higher increase in maximum temperature (0.97 ∘C) compared to minimum temperature (0.76 ∘C). Analyses of annual mean temperature at all the stations reveal that the high-altitude stations of Pahalgam (1.13 ∘C) and Gulmarg (1.04 ∘C) exhibit a steep increase and statistically significant trends. The overall precipitation and temperature patterns in the valley show significant decreases and increases in the annual rainfall and temperature respectively. Seasonal analyses show significant increasing trends in the winter and spring temperatures at all stations, with prominent decreases in spring precipitation. In the present study, the observed long-term trends in temperature (∘Cyear-1) and precipitation (mm year−1) along with their respective standard errors during 1980–2016 are as follows: (i) 0.05 (0.01) and −16.7 (6.3) for Gulmarg, (ii) 0.04 (0.01) and −6.6 (2.9) for Srinagar, (iii) 0.04 (0.01) and −0.69 (4.79) for Kokarnag, (iv) 0.04 (0.01) and −0.13 (3.95) for Pahalgam, (v) 0.034 (0.01) and −5.5 (3.6) for Kupwara, and (vi) 0.01 (0.01) and −7.96 (4.5) for Qazigund. The present study also reveals that variation in temperature and precipitation during winter (December–March) has a close association with the North Atlantic Oscillation (NAO). Further, the observed temperature data (monthly averaged data for 1980–2016) at all the stations show a good correlation of 0.86 with the results of WRF and therefore the model downscaled simulations are considered a valid scientific tool for the studies of climate change in this region. Though the correlation between WRF model and observed precipitation is significantly strong, the WRF model significantly underestimates the rainfall amount, which necessitates the need for the sensitivity study of the model using the various microphysical parameterization schemes. The potential vorticities in the upper troposphere are obtained from ERA-I over the Jammu and Kashmir region and indicate that the extreme weather event of September 2014 occurred due to breaking of intense atmospheric Rossby wave activity over Kashmir. As the wave could transport a large amount of water vapor from both the Bay of Bengal and Arabian Sea and dump them over the Kashmir region through wave breaking, it probably resulted in the historical devastating flooding of the whole Kashmir valley in the first week of September 2014. This was accompanied by extreme rainfall events measuring more than 620 mm in some parts of the Pir Panjal range in the south Kashmir.


2021 ◽  
Vol 10 (1) ◽  
pp. 20-48
Author(s):  
Imran Hameed Durrani ◽  
Shahzada Adnan ◽  
Syed Mobasher Aftab

Climate extremes are imperative to study the impacts of climate change that is significantly observed for the management of scarce water resources of the Quetta Valley. The daily data of temperature and precipitation are used to model the climate extreme indices for Quetta Meteorological Station from1961 to 2019. The statistical tests were performed by using Mann Kendal and Sen’s Slope method at the 95% confidence level. The overall change in minimum to maximum temperatures and precipitation-based climate extreme indices specify the frequencies of extreme events are increasing. That would cause heatwaves, gradual warming, steady dryness, and extreme precipitation events in the long term over the Quetta Valley. The minimum and maximum temperature-based indices inclusively indicate positive trends. That ultimately leads to a warming climate with a significant increase in summer as 5 days/decade, tropical nights as 5.3 days/decade, daily maximum as 0.28°C/decade, warm nights as 1.7 days/decade and warm days as 1.9 days/decade. For precipitation, all the indices show positive trends with a significant increase in consecutive wet days for 0.1 days/decade and an annual contribution of very wet days 0.8% per decade. The monthly increase in temperature and decrease in precipitation would increase the evaporative demands which may arise the water stress conditions over the valley and may put pressure over groundwater reservoirs.


2021 ◽  
Author(s):  
Tugba Ozturk ◽  
Dominic Matte ◽  
Jens Hesselbjerg Christensen

<div><span>In this work, we investigate the scalability of wet and dry persisting conditions over the European domain. For this aim, we have used the EURO-CORDEX ensemble of regional climate projections at 0.11° grid-mesh for daily minimum and maximum temperature and precipitation to analyze future changes in relation with extreme weather events addressing climate warming targets of 1°C, 2°C and 3°C, respectively. A simple scaling with the annual mean global mean temperature change modeled by the driving GCM is applied. We also identify the emergence of the scaled patterns of minimum and maximum temperatures and of wet and dry persisting conditions in relation with certain extreme weather indices. In particular we focus on pattern scaling of extreme temperatures and precipitation over sub-regions over the Mediterranean basin since this region has been identified as a climate change hot spot.</span></div>


2006 ◽  
Vol 19 (17) ◽  
pp. 4276-4293 ◽  
Author(s):  
H. J. Fowler ◽  
D. R. Archer

Abstract Temperature data for seven instrumental records in the Karakoram and Hindu Kush Mountains of the Upper Indus Basin (UIB) have been analyzed for seasonal and annual trends over the period 1961–2000 and compared with neighboring mountain regions and the Indian subcontinent. Strong contrasts are found between the behavior of winter and summer temperatures and between maximum and minimum temperatures. Winter mean and maximum temperature show significant increases while mean and minimum summer temperatures show consistent decline. Increase in diurnal temperature range (DTR) is consistently observed in all seasons and the annual dataset, a pattern shared by much of the Indian subcontinent but in direct contrast to both GCM projections and the narrowing of DTR seen worldwide. This divergence commenced around the middle of the twentieth century and is thought to result from changes in large-scale circulation patterns and feedback processes associated with the Indian monsoon. The impact of observed seasonal temperature trend on runoff is explored using derived regression relationships. Decreases of ∼20% in summer runoff in the rivers Hunza and Shyok are estimated to have resulted from the observed 1°C fall in mean summer temperature since 1961, with even greater reductions in spring months. The observed downward trend in summer temperature and runoff is consistent with the observed thickening and expansion of Karakoram glaciers, in contrast to widespread decay and retreat in the eastern Himalayas. This suggests that the western Himalayas are showing a different response to global warming than other parts of the globe.


2021 ◽  
Vol 21 (4) ◽  
pp. 474-479
Author(s):  
Junaid N. Khan ◽  
Asima Jillani ◽  
Syed Rouhullah Ali ◽  
Zarka Rashid ◽  
Zikra Rehman ◽  
...  

The present study aimed at modeling the impacts of climate change on precipitation and temperature and its trend in the context of changing climate in cold arid regions of north western Himalayas using multiple linear regression (MLR) model. The study was carried out in three different time slices viz., near future (2017-2045), mid future (2046-2072) and far future (2073-2099). The study includes the calibration of the observed climate data (maximum temperature, minimum temperature and precipitation) for fourteen years (2002-2015) and the outputs of downscaled scenario A2 of the Global Climate Model (GCM) data of Hadley Centre Coupled Model, (HadCM3) was used for validation, for the future. Daily climate (maximum temperature, minimum temperature and precipitation) scenarios were generated from 1961 to 2099 under A2 defined by Intergovernmental Panel on Climate Change (IPCC). During calibration, the maximum temperature, minimum temperature and precipitation showed decreasing trend. During validation, the maximum temperature showed an increasing trend in near future (2017- 2045) and decreasing trend in mid (2046-2072) and far future (2073-2099). While as, the minimum temperature and precipitation showed an increasing trend and decreasing trend respectively, in three futuristic phases. After validation, on comparison with the measured data, the variation in maximum temperature was found -2.59 oC in near future, -3.17 oC in mid future and -3.41 oC in far future. Similarly, for minimum temperature and precipitation, the variations with observed data were found 0.91 oC and -32.2 mm, respectively in near future, 2.01 oC and -34.6 mm, respectively in mid future, 4.08 oC and -3.4 mm, respectively in far future. These changes may be found due to global warming which lead to decrease in average annual precipitation and increase in average minimum temperatures causing the melting of glaciers.


2017 ◽  
Vol 19 (10) ◽  
pp. 949-955 ◽  
Author(s):  
Tariq Saiff Ullah ◽  
Syeda Sadiqa Firdous ◽  
Ansar Mehmood ◽  
Hamayun Shaheen ◽  
Muhammad Ejaz Ul Islam Dar

2021 ◽  
Vol 5 (3) ◽  
pp. 481-497
Author(s):  
Mansour Almazroui ◽  
Fahad Saeed ◽  
Sajjad Saeed ◽  
Muhammad Ismail ◽  
Muhammad Azhar Ehsan ◽  
...  

AbstractThis paper presents projected changes in extreme temperature and precipitation events by using Coupled Model Intercomparison Project phase 6 (CMIP6) data for mid-century (2036–2065) and end-century (2070–2099) periods with respect to the reference period (1985–2014). Four indices namely, Annual maximum of maximum temperature (TXx), Extreme heat wave days frequency (HWFI), Annual maximum consecutive 5-day precipitation (RX5day), and Consecutive Dry Days (CDD) were investigated under four socioeconomic scenarios (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5) over the entire globe and its 26 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) regions. The projections show an increase in intensity and frequency of hot temperature and precipitation extremes over land. The intensity of the hottest days (as measured by TXx) is projected to increase more in extratropical regions than in the tropics, while the frequency of extremely hot days (as measured by HWFI) is projected to increase more in the tropics. Drought frequency (as measured by CDD) is projected to increase more over Brazil, the Mediterranean, South Africa, and Australia. Meanwhile, the Asian monsoon regions (i.e., South Asia, East Asia, and Southeast Asia) become more prone to extreme flash flooding events later in the twenty-first century as shown by the higher RX5day index projections. The projected changes in extremes reveal large spatial variability within each SREX region. The spatial variability of the studied extreme events increases with increasing greenhouse gas concentration (GHG) and is higher at the end of the twenty-first century. The projected change in the extremes and the pattern of their spatial variability is minimum under the low-emission scenario SSP1-2.6. Our results indicate that an increased concentration of GHG leads to substantial increases in the extremes and their intensities. Hence, limiting CO2 emissions could substantially limit the risks associated with increases in extreme events in the twenty-first century.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aristeidis A. Villias ◽  
Stefanos G. Kourtis ◽  
Hercules C. Karkazis ◽  
Gregory L. Polyzois

Abstract Background The replica technique with its modifications (negative replica) has been used for the assessment of marginal fit (MF). However, identification of the boundaries between prosthesis, cement, and abutment is challenging. The recently developed Digital Image Analysis Sequence (DIAS) addresses this limitation. Although DIAS is applicable, its reliability has not yet been proven. The purpose of this study was to verify the DIAS as an acceptable method for the quantitative assessment of MF at cemented crowns, by conducting statistical tests of agreement between different examiners. Methods One hundred fifty-one implant-supported experimental crowns were cemented. Equal negative replicas were produced from the assemblies. Each replica was sectioned in six parts, which were photographed under an optical microscope. From the 906 standardized digital photomicrographs (0.65 μm/pixel), 130 were randomly selected for analysis. DIAS included tracing the profile of the crown and the abutment and marking the margin definition points before cementation. Next, the traced and marked outlines were superimposed on each digital image, highlighting the components’ boundaries and enabling MF measurements. One researcher ran the analysis twice and three others once, independently. Five groups of 130 measurements were formed. Intra- and interobserver reliability was evaluated with intraclass correlation coefficient (ICC). Agreement was estimated with the standard error of measurement (SEM), the smallest detectable change at the 95% confidence level (SDC95%), and the Bland and Altman method of limits of agreement (LoA). Results Measured MF ranged between 22.83 and 286.58 pixels. Both the intra- and interobserver reliability were excellent, ICC = 1 at 95% confidence level. The intra- and interobserver SEM and SDC95% were less than 1 and 3 pixels, respectively. The Bland–Altman analysis presented graphically high level of agreement between the mean measurement of the first observer and each of the three other observers’ measurements. Differences between observers were normally distributed. In all three cases, the mean difference was less than 1 pixel and within ± 3 pixels LoA laid at least 95% of differences. T tests of the differences did not reveal any fixed bias (P > .05, not significant). Conclusion The DIAS is an objective and reliable method able to detect and quantify MF at ranges observed in clinical practice.


Author(s):  
Sonam S. Dash ◽  
Dipaka R. Sena ◽  
Uday Mandal ◽  
Anil Kumar ◽  
Gopal Kumar ◽  
...  

Abstract The hydrologic behaviour of the Brahmani River basin (BRB) (39,633.90 km2), India was assessed for the base period (1970–1999) and future climate scenarios (2050) using the Soil and Water Assessment Tool (SWAT). Monthly streamflow data of 2000–2009 and 2010–2012 was used for calibration and validation, respectively, and performed satisfactorily with Nash-Sutcliffe Efficiency (ENS) of 0.52–0.55. The projected future climatic outcomes of the HadGEM2-ES model indicated that minimum temperature, maximum temperature, and precipitation may increase by 1.11–3.72 °C, 0.27–2.89 °C, and 16–263 mm, respectively, by 2050. The mean annual streamflow over the basin may increase by 20.86, 11.29, 4.45, and 37.94% under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the sediment yield is likely to increase by 23.34, 10.53, 2.45, and 27.62% under RCP 2.6, 4.5, 6.0, and 8.5, respectively, signifying RCP 8.5 to be the most adverse scenario for the BRB. Moreover, a ten-fold increase in environmental flow (defined as Q90) by the mid-century period is expected under the RCP 8.5 scenario. The vulnerable area assessment revealed that the increase in moderate and high erosion-prone regions will be more prevalent in the mid-century. The methodology developed herein could be successfully implemented for identification and prioritization of critical zones in worldwide river basins.


Geosciences ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 160 ◽  
Author(s):  
Ennio Ferrari ◽  
Roberto Coscarelli ◽  
Beniamino Sirangelo

Sign in / Sign up

Export Citation Format

Share Document