scholarly journals Chlorine-initiated oxidation of n-alkanes under high NOx conditions: Insights into secondary organic aerosol composition and volatility using a FIGAERO-CIMS

Author(s):  
Dongyu S. Wang ◽  
Lea Hildebrandt Ruiz

Abstract. Chlorine-initiated oxidation of n-alkanes (C8-12) under high nitrogen oxides conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8-12 alkanes (0.04 to 0.35). A High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO-CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation, thermal fragmentation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35 to 67 % RH) relative to dry conditions (under 5 % RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO-CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime.

2018 ◽  
Vol 18 (21) ◽  
pp. 15535-15553 ◽  
Author(s):  
Dongyu S. Wang ◽  
Lea Hildebrandt Ruiz

Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35 % to 67 % RH) relative to dry conditions (under 5 % RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime.


2020 ◽  
Author(s):  
Yunle Chen ◽  
Masayuki Takeuchi ◽  
Theodora Nah ◽  
Lu Xu ◽  
Manjula R. Canagaratna ◽  
...  

Abstract. The formation and evolution of secondary organic aerosol (SOA) was investigated at Yorkville, GA, in late summer (mid-August ~ mid-October, 2016). Organic aerosol (OA) composition was measured using two on-line mass spectrometry instruments, the high-resolution time-of-flight aerosol mass spectrometer (AMS) and the Filter Inlet for Gases and AEROsols coupled to a high-resolution time-of-flight iodide-adduct chemical ionization mass spectrometer (FIGAERO-CIMS). Through analysis of speciated organics data from FIGAERO-CIMS and factorization analysis of data obtained from both instruments, we observed notable SOA formation from isoprene and monoterpenes during both day and night. Specifically, in addition to isoprene epoxydiols (IEPOX) uptake, we identified isoprene SOA formation via hydroxyl hydroperoxide oxidation (ISOPOOH oxidation via non-IEPOX pathways) and isoprene organic nitrate formation via photooxidation in the presence of NOx and nitrate radical oxidation. Monoterpenes were found to be the most important SOA precursors at night. We observed significant contributions from highly-oxidized acid-like compounds to the aged OA factor from FIGAERO-CIMS. Taken together, our results showed that FIGAERO-CIMS measurements are highly complementary to the extensively used AMS factorization analysis, and together they provide more comprehensive insights into OA sources and composition.


2016 ◽  
Vol 9 (4) ◽  
pp. 1361-1382 ◽  
Author(s):  
Vincent Lemaire ◽  
Isabelle Coll ◽  
Florian Couvidat ◽  
Camille Mouchel-Vallon ◽  
Christian Seigneur ◽  
...  

Abstract. The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare the results of two different modeling approaches, a first-order kinetic process and a pH-dependent parameterization, both implemented in the CHIMERE air quality model (AQM) (www.lmd.polytechnique.fr/chimere), to simulate the spatial and temporal distribution of oligomerized secondary organic aerosol (SOA) over western Europe. We also included a comparison of organic carbon (OC) concentrations at two EMEP (European Monitoring and Evaluation Programme) stations. Our results show that there is a strong dependence of the results on the selected modeling approach: while the irreversible kinetic process leads to the oligomerization of about 50 % of the total BSOA mass, the pH-dependent approach shows a broader range of impacts, with a strong dependency on environmental parameters (pH and nature of aerosol) and the possibility for the process to be reversible. In parallel, we investigated the sensitivity of each modeling approach to the representation of SOA precursor solubility (Henry's law constant values). Finally, the pros and cons of each approach for the representation of SOA aging are discussed and recommendations are provided to improve current representations of oligomer formation in AQMs.


2018 ◽  
Vol 20 (9) ◽  
pp. 6591-6597
Author(s):  
A. E. Vizenor ◽  
A. A. Asa-Awuku

Cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. The gas-to-aerosol phase partitioning is critical for aerosol composition and thus gas-phase vapors and kinetics can play an important role in the CCN activity of SOA.


2017 ◽  
Vol 19 (9) ◽  
pp. 6497-6507 ◽  
Author(s):  
David M. Bell ◽  
Dan Imre ◽  
Scot T. Martin ◽  
Alla Zelenyuk

Chemical transformations and aging of secondary organic aerosol (SOA) particles can alter their physical and chemical properties, including particle morphology.


2017 ◽  
Vol 51 (20) ◽  
pp. 11607-11616 ◽  
Author(s):  
Mingjie Xie ◽  
Xi Chen ◽  
Michael D. Hays ◽  
Michael Lewandowski ◽  
John Offenberg ◽  
...  

2016 ◽  
Author(s):  
W. Rattanavaraha ◽  
K. Chu ◽  
S. H. Budisulistiorini ◽  
M. Riva ◽  
Y.-H. Lin ◽  
...  

Abstract. In the southeastern U.S., substantial emissions of isoprene from deciduous trees undergo atmospheric oxidation to form secondary organic aerosol (SOA) that contributes to fine particulate matter (PM2.5). Laboratory studies have revealed that anthropogenic pollutants, such as sulfur dioxide (SO2), oxides of nitrogen (NOx), and aerosol acidity, can enhance SOA formation from the hydroxyl radical (OH)-initiated oxidation of isoprene; however, the mechanisms by which specific pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected at the Birmingham, Alabama (BHM) ground site during the 2013 Southern Oxidant and Aerosol Study (SOAS). Sample extracts were analyzed by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) with prior trimethylsilylation and ultra performance liquid chromatography coupled to an electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR QTOFMS) to identify known isoprene SOA tracers. Tracers quantified using both surrogate and authentic standards were compared with collocated gas- and particle-phase data as well as meteorological data provided by the Southeastern Aerosol Research and Characterization (SEARCH) network to assess the impact of anthropogenic pollution on isoprene-derived SOA formation. Results of this study reveal that isoprene-derived SOA tracers contribute a substantial mass fraction of organic matter (OM) (~7 to ~20%). Isoprene-derived SOA tracers correlated with sulfate (SO42-) (r2 = 0.34, n = 117), but not with NOx. Moderate correlation between methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone (MAE/HMML)-derived SOA tracers and nitrate radical production (P[NO3]) (r2 = 0.57, n = 40) were observed during nighttime, suggesting a potential role of NO3 radical in forming this SOA type. However, the nighttime correlation of these tracers with nitrogen dioxide (NO2) (r2 = 0.26, n = 40) was weaker. Ozone (O3) correlated strongly with MAE/HMML-derived tracers (r2 = 0.72, n = 30) and moderately with 2-methyltetrols (r2 = 0.34, n = 15) during daytime only, suggesting that a fraction of SOA formation could occur from isoprene ozonolysis in urban areas. No correlation was observed between aerosol pH and isoprene-derived SOA. Lack of correlation between aerosol acidity and isoprene-derived SOA indicates that acidity is not a limiting factor for isoprene SOA formation at the BHM site as aerosols were acidic enough to promote multiphase chemistry of isoprene-derived epoxides throughout the duration of the study. All in all, these results confirm the reports that anthropogenic pollutants enhance isoprene-derived SOA formation.


2016 ◽  
Vol 16 (3) ◽  
pp. 1747-1760 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
C. Giorio ◽  
F. Siekmann ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene ∕ NOx ∕ light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.


2009 ◽  
Vol 9 (4) ◽  
pp. 1431-1449 ◽  
Author(s):  
J. L. Fry ◽  
A. Kiendler-Scharr ◽  
A. W. Rollins ◽  
P. J. Wooldridge ◽  
S. S. Brown ◽  
...  

Abstract. The yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5<10 ppb) and β-pinene (peak~15 ppb), with no seed aerosol. SOA formation was observed to be prompt and substantial (~50% mass yield under both dry conditions and at 60% RH), and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of pvap~5×10−6 Torr (6.67×10−4 Pa), which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+β-pinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5–8% of the global total) of organic aerosol on regional and global scales.


2014 ◽  
Vol 48 (20) ◽  
pp. 12012-12021 ◽  
Author(s):  
Ying-Hsuan Lin ◽  
Sri Hapsari Budisulistiorini ◽  
Kevin Chu ◽  
Richard A. Siejack ◽  
Haofei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document