scholarly journals In-Situ Measurements of Cloud Microphysical and Aerosol Properties during the Breakup of Stratocumulus Cloud Layers in Cold Air Outbreaks over the North Atlantic

2018 ◽  
Author(s):  
Gary Lloyd ◽  
Thomas W. Choularton ◽  
Keith N. Bower ◽  
Martin W. Gallagher ◽  
Jonathan Crosier ◽  
...  

Abstract. A key challenge for numerical weather prediction models is representing boundary layer clouds in Cold Air Outbreaks. One important aspect is the evolution of microphysical properties as stratocumulus transitions to open cellular convection. Abel et al. (2017) has for the first time from in-situ field observations shown that the breakup in cold air outbreaks over the eastern Atlantic may be controlled by the development of precipitation in the cloud system while the boundary layer becomes decoupled. This paper describes that case and examines in-situ measurements from 3 more cold air outbreaks. Flights were conducted using the UK FAAM BAe-146 aircraft in the North Atlantic region around the UK making detailed microphysical measurements in the stratiform boundary layer. As the cloudy boundary layer evolves prior to breakup, increasing liquid water paths, drop sizes and the formation of liquid precipitation is observed. Small numbers of ice particles are also observed. Eventually LWPs reduce significantly due to loss of water from the Sc cloud layer. In 3 of the cases, aerosols are removed from the boundary layer across the transition. This process appears to be similar to those observed in warm clouds and pockets of open cells in the subtropics. After breakup, deeper convective clouds form with bases warm enough for secondary ice production, leading to rapid glaciation. It is concluded that the precipitation is strongly associated with the break-up, with both weakening of the capping inversion and boundary layer decoupling also observed.

2018 ◽  
Vol 18 (23) ◽  
pp. 17191-17206 ◽  
Author(s):  
Gary Lloyd ◽  
Thomas W. Choularton ◽  
Keith N. Bower ◽  
Martin W. Gallagher ◽  
Jonathan Crosier ◽  
...  

Abstract. A key challenge for numerical weather prediction models is representing boundary layer clouds in cold air outbreaks (CAOs). One important aspect is the evolution of microphysical properties as stratocumulus transitions to open cellular convection. Abel et al. (2017) have shown, for the first time from in situ field observations, that the break-up in CAOs over the eastern Atlantic may be controlled by the development of precipitation in the cloud system while the boundary layer becomes decoupled. This paper describes that case and examines in situ measurements from three more CAOs. Flights were conducted using the UK Facility for Airborne Atmospheric Measurements (FAAM) British Aerospace-146 (BAe-146) aircraft in the North Atlantic region around the UK, making detailed microphysical measurements in the stratiform boundary layer. As the cloudy boundary layer evolves prior to break-up, increasing liquid water paths (LWPs) and drop sizes and the formation of liquid precipitation are observed. Small numbers of ice particles, typically a few per litre, are also observed. Eventually LWPs reduce significantly due to loss of water from the stratocumulus cloud (SC) layer. In three of the cases, aerosols are removed from the boundary layer across the transition. This process appears to be similar to those observed in warm clouds and pockets of open cells (POCs) in the subtropics. After break-up, deeper convective clouds form with bases warm enough for secondary ice production (SIP), leading to rapid glaciation. It is concluded that the precipitation is strongly associated with the break-up, with both weakening of the capping inversion and boundary layer decoupling also observed.


2020 ◽  
Vol 1 (2) ◽  
pp. 541-553
Author(s):  
Hilla Afargan-Gerstman ◽  
Iuliia Polkova ◽  
Lukas Papritz ◽  
Paolo Ruggieri ◽  
Martin P. King ◽  
...  

Abstract. Marine cold air outbreaks (MCAOs) in the northeastern North Atlantic occur due to the advection of extremely cold air over an ice-free ocean. MCAOs are associated with a range of severe weather phenomena, such as polar lows, strong surface winds and intense cooling of the ocean surface. Given these extreme impacts, the identification of precursors of MCAOs is crucial for improved long-range prediction of associated impacts on Arctic infrastructure and human lives. MCAO frequency has been linked to the strength of the stratospheric polar vortex, but the study of connections to the occurrence of extreme stratospheric events, known as sudden stratospheric warmings (SSWs), has been limited to cold extremes over land. Here, the influence of SSW events on MCAOs over the North Atlantic ocean is studied using reanalysis datasets. Overall, SSW events are found to be associated with more frequent MCAOs in the Barents Sea and the Norwegian Sea compared to climatology and less frequent MCAOs in the Labrador Sea. In particular, SSW events project onto an anomalous dipole pattern of geopotential height 500 hPa, which consists of a ridge anomaly over Greenland and a trough anomaly over Scandinavia. By affecting the variability of the large-scale circulation patterns in the North Atlantic, SSW events contribute to the strong northerly flow over the Barents and Norwegian seas and thereby increase the likelihood of MCAOs in these regions. In contrast, the positive geopotential height anomaly over Greenland reduces the probability of MCAOs in the Labrador Sea after SSW events. As SSW events tend to have a long-term influence on surface weather, these results are expected to benefit the predictability of MCAOs in the Nordic Seas for winters with SSW events.


2021 ◽  
Author(s):  
Sandro Dahlke ◽  
Amelie Solbes ◽  
Marion Maturilli

<p>Marine Cold Air Outbreaks (MCAOs) are common features above the open water surfaces of the Nordic Seas. They are characterized by marked vertical temperature gradients, which typically persist over several days, and strongly shape air-sea heat exchanges, convection, weather and boundary layer characteristics in the affected region. Based on the novel ERA-5 reanalysis product, we are analyzing climatological and recent aspects of MCAOs in the Fram Strait region of the North Atlantic, which is a “hot spot” particularly during winter and early spring. MCAOs in Fram Strait occur preferably when persistent low pressure systems occupy Northern Scandinavia and the Barents/Kara Sea, which exerts strong zonal pressure gradients across Fram Strait. Based on the vertical gradients of potential temperature, occurrence frequencies of MCAOs of different strengths are investigated.  It is found that MCAOs of moderate strength occur at an average of 7-9 days per month between December and March, while especially strong MCAOs occur at an average of 1-3 days in that time. Regarding the former, March is the only month for which a significant trend of +1.7 days/month/decade was found over the 1979-2020 period. While regional MCAO expression is dependent on both the relative location of the ice edge and on the atmospheric circulation, MCAO increase in Fram Strait in March can be explained mainly with the latter and the associated zonal pressure gradient.</p><p>February and March 2020 serve as examples of particularly strong and persistent MCAOs in Fram Strait. The record-breaking strong polar vortex at that time, which had received global attention in the media and literature, had left its associated footprint in near surface and tropospheric circulation fields, hence providing anomalous northerly flow across the ice edge in Fram Strait. While this clearly shaped MCAOs in Fram Strait, associated anomalies were also observed in the North Atlantic Sea Ice edge, and were even detected in upper air profiles and sea ice conditions on Svalbard.</p><p>For the detailed study of such northerly advection events, atmospheric data gathered during the year-long MOSAiC expedition 2019/2020 in the central Arctic are expected to provide valuable information in the upstream direction of the anomalies in Fram Strait.</p>


2004 ◽  
Vol 4 (4) ◽  
pp. 4407-4454 ◽  
Author(s):  
S. A. Penkett ◽  
M. J. Evans ◽  
C. E. Reeves ◽  
K. S. Law ◽  
P. S. Monks ◽  
...  

Abstract. This paper presents strong experimental evidence for a major perturbation in ozone concentrations over large parts of the North Atlantic Ocean from the surface to 8 km associated with continental pollutants. The evidence was gathered in the course of 7 flights by the UK Meteorological Office C-130 aircraft based on the Azores, and 4 ferry flights between the UK to the Azores in spring and summer 1997 as a component of the NERC-funded ACSOE project. The total latitude range covered was approximately 55°N–25°N, and the longitude range was approximately 0° to 40°W. Many profiles were made between the sea surface and altitudes up to 9 km to survey the composition of the marine atmosphere. The C-130 aircraft was comprehensively equipped to measure many chemical and physical parameters along with standard meteorological instrumentation. Thus it was able to measure ozone and speciated NOy, along with tracers including water vapour, carbon monoxide and condensation nuclei, in near real time. The overall "picture" of the troposphere over large parts of the North Atlantic is of layers of pollution from the continents of different ages interspersed with layers of air uplifted from the marine boundary layer. The lowest ozone concentrations were recorded in the marine boundary layer where there is evidence for extensive ozone destruction in summer. Flights were made to penetrate the outflow of hurricane Erica, to determine the southerly extent of polluted air in summer, to examine the impact of frontal systems on the composition of remote marine air, and to trace long-range pollution from the west coast of the USA interspersed with air with a stratospheric origin. In one of the spring flights it is possible that a plume of polluted air with high ozone and NOy, and with an origin in southeast Asia, was intercepted off the coast of Portugal. The concentrations of NOx, in this plume were sufficient for ozone formation to be continuing along its track from west to east. The instrument to measure NOy almost certainly was only measuring the sum of organic nitrates (mostly in the form of PAN) plus NOx. The high correlation between NOy and ozone under these conditions strongly suggests a non-stratospheric source for most of the ozone encountered over large parts of the atmosphere upwind of Europe. There was a marked seasonal variation in the NOy with about twice as much present in the spring flights than in the summer flights. The overall ozone levels in both spring and summer were somewhat similar although the highest ozone concentration encountered (~100 ppbv) was observed in summer in some polluted layers in mid Atlantic with an origin in the boundary layer over the southeastern USA. The bulk of the pollutants, ozone, CO, and NOy, were in the free troposphere at altitudes between 3 and 8 km. The only instances of pollution at lower levels were in the form of ship plumes, which were encountered several times. The data therefore strongly support the need for more in-situ aircraft experiments to quantify and understand the phenomenon of long-range transport of pollution from continent to continent. Observations at ground-based stations are inadequate for this purpose and satellite data is incomplete both in terms of its altitude detail and in the extent of chemical speciation, particularly for ascertaining whether chemical production and destruction processes for ozone are occurring.


2007 ◽  
Vol 25 (11) ◽  
pp. 2247-2257 ◽  
Author(s):  
C. Jamet ◽  
C. Moulin ◽  
N. Lefèvre

Abstract. Automated instruments on board Volunteer Observing Ships (VOS) have provided high-frequency pCO2 measurements over basin-wide regions for a decade or so. In order to estimate regional air-sea CO2 fluxes, it is necessary to interpolate between in-situ measurements to obtain maps of the marine pCO2. Such an interpolation remains, however, a difficult task because VOS lines are too distant from each other to capture the high pCO2 variability. Relevant physical parameters available at large scale are thus necessary to serve as a guide to estimate the pCO2 values between the VOS lines. Satellites do not measure pCO2 but they give access to parameters related to the processes that control its variability, such as sea surface temperature (SST). In this paper we developed a method to compute pCO2 maps using satellite data (SST and CHL, the chlorophyll concentration), combined with a climatology of the mixed-layer depth (MLD). Using 15 401 measurements of surface pCO2 acquired in the North Atlantic between UK and Jamaica, between June 1994 and August 1995, we show that the parameterization of pCO2 as a function of SST, CHL and MLD yields more realistic pCO2 values than parameterizations that have been widely used in the past, based on SST, latitude, longitude or SST only. This parameterization was then used to generate seasonal maps of pCO2 over the North Atlantic. Results show that our approach yields the best marine pCO2 estimates, both in terms of absolute accuracy, when compared with an independent data set, and of geographical patterns, when compared to the climatology of Takahashi et al. (2002). This suggests that monitoring the seasonal variability of pCO2 over basin-wide regions is possible, provided that sufficient VOS lines are available.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Edwards ◽  
Pierre Hélaouët ◽  
Eric Goberville ◽  
Alistair Lindley ◽  
Geraint A. Tarling ◽  
...  

AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.


Sign in / Sign up

Export Citation Format

Share Document