scholarly journals Review of the paper “Year-round record of near-surface ozone and “O3 enhancement events” (OEEs) at Dome A, East Antarctica” by Minghu Ding et al.

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Minghu Ding ◽  
Biao Tian ◽  
Michael Ashley ◽  
Zhenxi Zhu ◽  
Lifan Wang ◽  
...  

Abstract. To evaluate the characteristics of near-surface O3 over Dome A (Kunlun Station), which is located at the summit of the east Antarctic Ice Sheet, continuous observations were carried out in 2016. Together with observations from the Amundsen–Scott Station (South Pole) and Zhongshan Station, the seasonal and diurnal O3 variabilities were investigated. The results showed different patterns between coastal and inland Antarctic areas that were characterized by high concentrations in cold seasons and at night. The annual mean values at the three stations were 29.19 ± 7.52 ppb, 29.94 ± 4.97 ppb and 24.06 ± 5.79 ppb. Then, specific atmospheric processes, including synoptic-scale air mass transport, were analysed by Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectory analysis and the potential source contribution function (PSCF) model. Long-range transport was found to account for the O3 enhancement events (OEEs) during summer at Dome A, rather than efficient local production (consistent with previous studies in inland Antarctica). In addition, we observed OEEs during the polar night in the Dome A region, which was not previously found in Antarctica. To explain this unique finding, the occurrence of stratospheric intrusion (stratosphere-to-troposphere, STT) events was studied with the Stratosphere-to-Troposphere Exchange Flux (STEFLUX) tool. This finding suggested that STT events occurred frequently over Dome A and could account for 55 % of the total polar night period. The occurrence probability of OEEs agreed well with STT events, indicating that the STT process was the dominant factor affecting the near-surface O3 over Dome A in the absence of photochemical reaction sources during polar night. This work provides unique information on ozone variation at Dome A and expands our knowledge regarding such events in Antarctica.


2016 ◽  
Vol 16 (12) ◽  
pp. 8053-8069 ◽  
Author(s):  
Michel Legrand ◽  
Susanne Preunkert ◽  
Joël Savarino ◽  
Markus M. Frey ◽  
Alexandre Kukui ◽  
...  

Abstract. Surface ozone has been measured since 2004 at the coastal East Antarctic site of Dumont d'Urville (DDU), and since 2007 at the Concordia station located on the high East Antarctic plateau. This paper discusses long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites. At Concordia, near-surface ozone data were complemented by balloon soundings and compared to similar measurements done at the South Pole. The DDU record is compared to those obtained at the coastal site of Syowa, also located in East Antarctica, as well as the coastal sites of Neumayer and Halley, both located on the coast of the Weddell Sea in West Antarctica. Surface ozone mixing ratios exhibit very similar seasonal cycles at Concordia and the South Pole. However, in summer the diurnal cycle of ozone is different at the two sites with a drop of ozone in the afternoon at Concordia but not at the South Pole. The vertical distribution of ozone above the snow surface also differs. When present, the ozone-rich layer located near the ground is better mixed and deeper at Concordia (up to 400 m) than at the South Pole during sunlight hours. These differences are related to different solar radiation and wind regimes encountered at these two inland sites. DDU appears to be the coastal site where the impact of the late winter/spring bromine chemistry is the weakest, but where the impact of elevated ozone levels caused by NOx snow emissions from the high Antarctic plateau is the highest. The highest impact of the bromine chemistry is seen at Halley and Neumayer, and to a lesser extent at Syowa. These three sites are only weakly impacted by the NOx chemistry and the net ozone production occurring on the high Antarctic plateau. The differences in late winter/spring are attributed to the abundance of sea ice offshore from the sites, whereas those in summer are related to the topography of East Antarctica that promotes the katabatic flow bringing oxidant-rich inland air masses to the site. There appears to be a decreasing change in summer surface ozone at the two East Antarctic sites of Concordia and DDU over the most recent period (2004–2014 and 2007–2014). Further research, including continued monitoring, is needed at these two sites to better separate the effect of synoptic transport from possible change of NOx snow emissions in response to recovery of the stratospheric ozone layer leading to penetration of more UV radiation to the surface.


2020 ◽  
Author(s):  
Minghu Ding ◽  
Biao Tian ◽  
Michael C. B. Ashley ◽  
Davide Putero ◽  
Zhenxi Zhu ◽  
...  

Abstract. Dome A, the summit of the east Antarctic Ice Sheet, is an area challenging to access and is one of the harshest environments on Earth. Up until recently, long term automated observations from Dome A were only possible with very low power instruments such as a basic meteorological station. To evaluate the characteristics of near-surface O3, continuous observations were carried out in 2016. Together with observations at the Amundsen-Scott Station (South Pole – SP) and Zhongshan Station (ZS, on the southeast coast of Prydz Bay), the seasonal and diurnal O3 variabilities were investigated. The results showed different patterns between coastal and inland Antarctic areas that were characterized by high concentrations in cold seasons and at night. The annual mean values at the three stations (DA, SP and ZS) were 29.2 ± 7.5 ppb, 29.9 ± 5.0 ppb and 24.1 ± 5.8 ppb, respectively. We investigated the effect of specific atmospheric processes on near-surface summer O3 variability, when O3 enhancement events (OEEs) are systematically observed at DA (average monthly frequency peaking up to 64.5 % in December). As deduced by a statistical selection methodology, these O3 enhancement events (OEEs) are affected by a significant interannual variability, both in their average O3 values and in their frequency. To explain part of this variability, we analyzed the OEEs as a function of specific atmospheric processes: (i) the role of synoptic-scale air mass transport over the Antarctic Plateau was explored using the Lagrangian back-trajectory analysis – Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) method and (ii) the occurrence of “deep” stratospheric intrusion events was investigated using the Lagrangian tool STEFLUX. The specific atmospheric processes, including synoptic-scale air mass transport, were analysed by the HYSPLIT back-trajectory analysis and the potential source contribution function (PSCF) model. Short-range transport accounted for the O3 enhancement events (OEEs) during summer at DA, rather than efficient local production, which is consistent with previous studies of inland Antarctica. Moreover, the identification of recent (i.e., 4-day old) stratospheric intrusions events by STEFLUX suggested that “deep” events only had a minor influence (up to 1.1 % of the period, in August) on “deep” events during the variability of near-surface summer O3 at DA. The "deep" events during the polar night were significantly higher than those during the polar day. This work provides unique information on ozone variation at DA and expands our knowledge of such events in Antarctica. Data are available at https://doi.org/10.5281/zenodo.3923517 (Ding et al., 2020).


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


2019 ◽  
Vol 13 (12) ◽  
pp. 3405-3412 ◽  
Author(s):  
Charles Amory ◽  
Christoph Kittel

Abstract. Sublimation of snow particles during transport has been recognized as an important ablation process on the Antarctic ice sheet. The resulting increase in moisture content and cooling of the ambient air are thermodynamic negative feedbacks that both contribute to increase the relative humidity of the air, inhibiting further sublimation when saturation is reached. This self-limiting effect and the associated development of saturated near-surface air layers in drifting snow conditions have mainly been described through modelling studies and a few field observations. A set of meteorological data, including drifting snow mass fluxes and vertical profiles of relative humidity, collected at site D17 in coastal Adélie Land (East Antarctica) during 2013 is used to study the relationship between saturation of the near-surface atmosphere and the occurrence of drifting snow in a katabatic wind region that is among the most prone to snow transport by wind. Atmospheric moistening by the sublimation of the windborne snow particles generally results in a strong increase in relative humidity with the magnitude of drifting snow and a decrease in its vertical gradient, suggesting that windborne-snow sublimation can be an important contributor to the local near-surface moisture budget. Despite a high incidence of drifting snow at the measurement location (60.1 % of the time), saturation, when attained, is however most often limited to a thin air layer below 1 m above ground. The development of a near-surface saturated air layer up to the highest measurement level of 5.5 m is observed in only 8.2 % of the drifting snow occurrences or 6.3 % of the time and mainly occurs in strong wind speed and drift conditions. This relatively rare occurrence of ambient saturation is explained by the likely existence of moisture-removal mechanisms inherent to the katabatic and turbulent nature of the boundary-layer flow that weaken the negative feedback of windborne-snow sublimation. Such mechanisms, potentially quite active in katabatic-generated windborne-snow layers all over Antarctica, may be very important in understanding the surface mass and atmospheric moisture budgets of the ice sheet by enhancing windborne-snow sublimation.


2020 ◽  
Author(s):  
Yee Jun Tham ◽  
Nina Sarnela ◽  
Carlos A. Cuevas ◽  
Iyer Siddharth ◽  
Lisa Beck ◽  
...  

&lt;p&gt;Atmospheric halogens chemistry like the catalytic reaction of bromine and chlorine radicals with ozone (O&lt;sub&gt;3&lt;/sub&gt;) has been known to cause the springtime surface-ozone destruction in the polar region. Although the initial atmospheric reactions of chlorine with ozone are well understood, the &amp;#64257;nal oxidation steps leading to the formation of chlorate (ClO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) and perchlorate (ClO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) remain unclear due to the lack of direct evidence of their presence and fate in the atmosphere. In this study, we present the first high-resolution ambient data set of gas-phase HClO&lt;sub&gt;3&lt;/sub&gt; (chloric acid) and HClO&lt;sub&gt;4&lt;/sub&gt; (perchlorate acid) obtained from the field measurement at the Villum Research Station, Station Nord, in high arctic North Greenland (81&amp;#176;36&amp;#8217; N, 16&amp;#176;40&amp;#8217; W) during the spring of 2015. A state-of-the-art chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF) was used in negative ion mode with nitrate ion as the reagent ion to detect the gas-phase HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt;. We measured significant level of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt; only during the springtime ozone depletion events in the Greenland, with concentration up to 9x10&lt;sup&gt;5&lt;/sup&gt; molecule cm&lt;sup&gt;-3&lt;/sup&gt;. Air mass trajectory analysis shows that the air during the ozone depletion event was confined to near-surface, indicating that the O&lt;sub&gt;3&lt;/sub&gt; and surface of sea-ice/snowpack may play important roles in the formation of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt;. We used high-level quantum-chemical methods to calculate the ultraviolet-visible absorption spectra and cross-section of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt; in the gas-phase to assess their fates in the atmosphere. Overall, our results reveal the presence of HClO&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt; during ozone depletion events, which could affect the chlorine chemistry in the Arctic atmosphere.&lt;/p&gt;


Elem Sci Anth ◽  
2016 ◽  
Vol 4 ◽  
Author(s):  
Peter K. Peterson ◽  
Kerri A. Pratt ◽  
William R. Simpson ◽  
Son V. Nghiem ◽  
Lemuel X. Pérez Pérez ◽  
...  

Abstract Boundary layer atmospheric ozone depletion events (ODEs) are commonly observed across polar sea ice regions following polar sunrise. During March-April 2005 in Alaska, the coastal site of Barrow and inland site of Atqasuk experienced ODEs (O3&lt; 10 nmol mol-1) concurrently for 31% of the observations, consistent with large spatial scale ozone depletion. However, 7% of the time ODEs were exclusively observed inland at Atqasuk. This phenomenon also occurred during one of nine flights during the BRomine, Ozone, and Mercury EXperiment (BROMEX), when atmospheric vertical profiles at both sites showed near-surface ozone depletion only at Atqasuk on 28 March 2012. Concurrent in-flight BrO measurements made using nadir scanning differential optical absorption spectroscopy (DOAS) showed the differences in ozone vertical profiles at these two sites could not be attributed to differences in locally occurring halogen chemistry. During both studies, backward air mass trajectories showed that the Barrow air masses observed had interacted with open sea ice leads, causing increased vertical mixing and recovery of ozone at Barrow and not Atqasuk, where the air masses only interacted with tundra and consolidated sea ice. These observations suggest that, while it is typical for coastal and inland sites to have similar ozone conditions, open leads may cause heterogeneity in the chemical composition of the springtime Arctic boundary layer over coastal and inland areas adjacent to sea ice regions.


2019 ◽  
Author(s):  
Étienne Vignon ◽  
Olivier Traullé ◽  
Alexis Berne

Abstract. Eight years of high-resolution radiosonde data at nine Antarctic stations are analysed to provide the first large scale characterization of the fine scale vertical structure of the low troposphere up to 3 km of altitude over the coastal margins of East Antarctica. Radiosonde data show a large spatial variability of wind, temperature and humidity profiles, with different features between stations in katabatic regions (e.g., Dumont d'Urville and Mawson stations), stations over two ice shelves (Neumayer and Halley stations) and regions with complex orography (e.g., Mc Murdo). At Dumont d'Urville, Mawson and Davis stations, the yearly median wind speed profiles exhibit a clear low-level katabatic jet. During precipitation events, the low-level flow generally remains of continental origin and its speed is even reinforced due to the increase in the continent- ocean pressure gradient. Meanwhile, the relative humidity profiles show a dry low troposphere, suggesting the occurence of low-level sublimation of precipitation in katabatic regions but such a phenomenon does not appreciably occur over the ice-shelves near Halley and Neumayer. Although ERA-Interim and ERA5 reanalyses assimilate radiosoundings at most stations considered here, substantial – and sometimes large – low-level wind and humidity biases are revealed but ERA5 shows overall better performances. A free simulation with the regional model Polar WRF (at a 35-km resolution) over the entire continent shows too strong and too shallow near-surface jets in katabatic regions especially in winter. This may be a consequence of an understimated coastal cold air bump and associated sea-continent pressure gradient force due to the coarse 35 km resolution of the Polar WRF simulation. Beyond documenting the vertical structure of the low troposphere over coastal East-Antarctica, this study gives insights into the reliability and accuracy of two major reanalysis products in this region on the Earth and it raises the difficulty of modeling the low-level flow over the margins of the ice sheet with a state-of-the-art climate model.


2018 ◽  
Vol 12 (4) ◽  
pp. 1177-1194 ◽  
Author(s):  
Guitao Shi ◽  
Meredith G. Hastings ◽  
Jinhai Yu ◽  
Tianming Ma ◽  
Zhengyi Hu ◽  
...  

Abstract. Antarctic ice core nitrate (NO3-) can provide a unique record of the atmospheric reactive nitrogen cycle. However, the factors influencing the deposition and preservation of NO3- at the ice sheet surface must first be understood. Therefore, an intensive program of snow and atmospheric sampling was made on a traverse from the coast to the ice sheet summit, Dome A, East Antarctica. Snow samples in this observation include 120 surface snow samples (top ∼ 3 cm), 20 snow pits with depths of 150 to 300 cm, and 6 crystal ice samples (the topmost needle-like layer on Dome A plateau). The main purpose of this investigation is to characterize the distribution pattern and preservation of NO3- concentrations in the snow in different environments. Results show that an increasing trend of NO3- concentrations with distance inland is present in surface snow, and NO3- is extremely enriched in the topmost crystal ice (with a maximum of 16.1 µeq L−1). NO3- concentration profiles for snow pits vary between coastal and inland sites. On the coast, the deposited NO3- was largely preserved, and the archived NO3- fluxes are dominated by snow accumulation. The relationship between the archived NO3- and snow accumulation rate can be depicted well by a linear model, suggesting a homogeneity of atmospheric NO3- levels. It is estimated that dry deposition contributes 27–44 % of the archived NO3- fluxes, and the dry deposition velocity and scavenging ratio for NO3- were relatively constant near the coast. Compared to the coast, the inland snow shows a relatively weak correlation between archived NO3- and snow accumulation, and the archived NO3- fluxes were more dependent on concentration. The relationship between NO3- and coexisting ions (nssSO42-, Na+ and Cl−) was also investigated, and the results show a correlation between nssSO42- (fine aerosol particles) and NO3- in surface snow, while the correlation between NO3- and Na+ (mainly associated with coarse aerosol particles) is not significant. In inland snow, there were no significant relationships found between NO3- and the coexisting ions, suggesting a dominant role of NO3- recycling in determining the concentrations.


Sign in / Sign up

Export Citation Format

Share Document