scholarly journals Cloud macro-physical properties in Saharan dust laden and dust free North Atlantic trade wind regimes: A lidar study

2019 ◽  
Author(s):  
Manuel Gutleben ◽  
Silke Groß ◽  
Martin Wirth

Abstract. Saharan dust is known to have an important impact on the atmospheric radiation budget, both directly and indirectly by changing cloud properties. However, up to now it is still an open question if elevated and long-range transported Saharan dust layers have an effect on subjacent marine trade wind cloud occurrence. Shallow trade wind clouds have a significant impact on the Earth's radiation budget and still introduce large uncertainties in climate sensitivity estimates, because of their poor representation in climate models. The Next-generation Aircraft Remote-Sensing for Validation studies (NARVAL) aimed at providing a better understanding of shallow marine trade wind clouds and their interplay with long-range transported elevated Saharan dust layers. Two airborne campaigns were conducted – the first one in December 2013 and the second one in August 2016; the latter one during the peak season of transatlantic Saharan dust transport. Airborne lidar measurements in the vicinity of Barbados performed during the second field campaign are used to investigate possible differences between shallow marine cloud macro-physical properties in dust-free regions and regions comprising elevated Saharan dust layers. The cloud top height distribution derived in dust-laden regions differs from the one derived in dust-free regions and indicates that clouds are shallower and convective development is suppressed. Furthermore, regions comprising elevated Saharan dust layers show a larger fraction of small clouds and larger cloud free regions, compared to dust-free regions. The cloud fraction in dusty regions is only 14 % compared to a fraction of 31 % in dust-free regions. Moreover, a decreasing trend of cloud fractions and cloud top heights with increasing dust layer vertical extent as well as aerosol optical depth is found.

2019 ◽  
Vol 19 (16) ◽  
pp. 10659-10673 ◽  
Author(s):  
Manuel Gutleben ◽  
Silke Groß ◽  
Martin Wirth

Abstract. The Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) aimed at providing a better understanding of shallow marine trade wind clouds and their interplay with long-range-transported elevated Saharan dust layers over the subtropical North Atlantic Ocean. Two airborne campaigns were conducted – the first one in December 2013 (winter) and the second one in August 2016, the latter one during the peak season of transatlantic Saharan dust transport (summer). In this study airborne lidar measurements in the vicinity of Barbados performed during both campaigns are used to investigate possible differences between shallow marine cloud macro-physical properties in dust-free regions and regions comprising elevated Saharan dust layers as well as between different seasons. The cloud top height distribution derived in dust-laden regions differs from the one derived in dust-free regions and indicates that there are less and shallower clouds in the dust-laden than in dust-free trades. Additionally, a clear shift of the distribution to higher altitudes is observed in the dust-free winter season, compared to the summer season. While during the summer season most cloud tops are observed in heights ranging from 0.5 to 1.0 km, most cloud tops in winter season are detected between 2.0 and 2.5 km. Moreover, it is found that regions comprising elevated Saharan dust layers show a larger fraction of small clouds and larger cloud-free regions, compared to dust-free regions. The cloud fraction in the dust-laden summer trades is only 14 % compared to a fraction of 31 % and 37 % in dust-free trades and the winter season. Dropsonde measurements show that long-range-transported Saharan dust layers come along with two additional inversions which counteract convective development, stabilize the stratification and may lead to a decrease in convection in those areas. Moreover, a decreasing trend of cloud fractions and cloud top heights with increasing dust layer vertical extent as well as aerosol optical depth is found.


2015 ◽  
Vol 15 (22) ◽  
pp. 32323-32365 ◽  
Author(s):  
G. Ancellet ◽  
J. Pelon ◽  
J. Totems ◽  
P. Chazette ◽  
A. Bazureau ◽  
...  

Abstract. Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.


2020 ◽  
Author(s):  
Stefanos Samaras ◽  
Christine Böckmann ◽  
Moritz Haarig ◽  
Albert Ansmann ◽  
Adrian Walser ◽  
...  

Abstract. Saharan dust is a major natural atmospheric aerosol component with significant impact on the Earth radiation budget. In this work we determine the microphysical properties of dust particles after a long-range transport over the Atlantic Ocean, using input from three depolarization channels of a multi-wavelength polarization Raman lidar. The measurements were performed at Barbados in the framework of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) in the summers of 2013 and 2014. The microphysical retrievals are performed with the software tool SphInX (Spheroidal Inversion Experiments) which uses regularization for the inversion process and a new two-dimensional (2-D) extension of the Mie model approximating dust with spheroids. The method allows us to simultaneously retrieve shape- and size-dependent particle distributions. Because dust particles are mostly non-spherical this software tool fills the gap in estimating the non-spherical particle fraction. Two cases measured on 10 July 2013 and 20 June 2014 are discussed. 2-D radius-bimodal shape-size distribution are retrieved. The ratio of spherical-to-non-spherical contributions to the particle number concentration was found to be about 3/7. A volume-weighted effective aspect ratio of 1.1 was obtained, indicating slightly prolate particles. The total effective radius for the two cases in the preselected radius range from 0.01–2.2 μm was found to be, on average, 0.75 μm. The stronger dust event (10 July 2013) showed about 24 % higher values for the total surface-area and volume concentration. Finally, we compare our results with the ones from the polarization lidar-photometer networking (POLIPHON) method and ground-based photometers as well as with airborne in situ particle counters. Considering all differences in these independent approaches, we find a qualitatively good agreement between the different results and a consistent description of the dust cases. Such an extensive comparison is a novel and fruitful exercise and corroborates that the mathematical retrieval based on Raman lidar data of particle backscattering, extinction, and depolarization is a powerful tool even in the case of dust particles.


2016 ◽  
Author(s):  
Michèlle van der Does ◽  
Laura F. Korte ◽  
Chris I. Munday ◽  
Geert-Jan A. Brummer ◽  
Jan-Berend W. Stuut

Abstract. Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12˚ N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 μm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.


2016 ◽  
Vol 16 (7) ◽  
pp. 4725-4742 ◽  
Author(s):  
Gerard Ancellet ◽  
Jacques Pelon ◽  
Julien Totems ◽  
Patrick Chazette ◽  
Ariane Bazureau ◽  
...  

Abstract. Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow from Sahara.


2021 ◽  
Author(s):  
Florian Ewald ◽  
Silke Groß ◽  
Martin Wirth ◽  
Martin Hagen ◽  
Manuel Gutleben

<p>The interaction of aerosol, clouds, and water vapor is still a major source of uncertainty in projections of Earth’s future climate. Especially in the trades, the response of shallow marine trade wind convection to external forcings is poorly understood. These low-level clouds have an important cooling effect on surface temperatures, while their amount and height are directly influenced by the radiative cooling by aerosols and water vapor aloft. Furthermore, there is evidence that aerosols can modify the microphysical properties (e.g., by glaciation) and the precipitation formation inside these clouds while water vapor above the trade inversion influences the atmospheric stability in which they form. Due to the small horizontal scale of these clouds, the vertical separation of atmospheric layers, and the temporal evolution of precipitation, the observation of this interplay by geostationary satellites is scarce.</p><p>To alleviate this observational data gap over the tropical North-Atlantic region, airborne lidar and cloud radar measurements were performed in the vicinity of Barbados and complemented with dedicated weather radar measurements during the EUREC4A campaign in February 2020. Aerosol properties and the vertical water vapor profile were characterized with simultaneous high spectral resolution and differential absorption measurements using the WALES lidar onboard the German research aircraft HALO. On the same platform, the vertical cloud extent and the presence of precipitation were sampled with the high-power Ka-band cloud radar HAMP MIRA. To capture the temporal evolution of precipitation patterns, these measurements were complemented with measurements of the C-band polarimetric weather radar POLDIRAD which was installed on the windward side of Barbados. During EUREC4A, measurements flights were conducted in high and low aerosol loads to sample its influence on the marine trade wind convection.</p><p>This presentation will briefly introduce the instrumentation, data processing, and availability and give an overview of gained insights and ongoing studies. By means of case studies, we will give first impressions of the complementary nature of the collocated, highly resolved airborne measurements and the POLDIRAD measurements which provide the horizontal context and temporal evolution of the precipitation formation. By combining the cross-sectional snapshots with the temporal evolution of the precipitation pattern we will provide a detailed insight into the interplay between the aerosol and water vapor layer and the precipitation formation in the shallow marine trade wind convection.</p>


2016 ◽  
Vol 16 (21) ◽  
pp. 13697-13710 ◽  
Author(s):  
Michèlle van der Does ◽  
Laura F. Korte ◽  
Chris I. Munday ◽  
Geert-Jan A. Brummer ◽  
Jan-Berend W. Stuut

Abstract. Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.


2021 ◽  
Author(s):  
Guangyao Dai ◽  
Kangwen Sun ◽  
Xiaoye Wang ◽  
Songhua Wu ◽  
Xiangying E ◽  
...  

Abstract. In this paper, a long-term large-scale Sahara dust transport event occurred during 14 June and 27 June 2020 is tracked with the spaceborne lidars ALADIN and CALIOP observations and the models ECMWF and HYSPLIT analysis. We evaluate the performance of the ALADIN and CALIOP on the observations of dust optical properties and wind fields and explore the capability in tracking the dust events and in calculating the dust horizontal mass fluxes with the combination of measurement data from ALADIN and CALIOP coupled with the products from ECMWF and HYSPLIT. Compared with the traditional assessments based on the data from CALIOP and models, the complement of Aeolus-produced aerosol optical properties and wind data will significantly improve the accuracy of dust horizontal flux estimations. The dust plumes are identified with AIRS/Aqua Dust Score Index and with the Vertical Feature Mask products from CALIPSO. The emission, dispersion, transport and deposition of the dust event are monitored using the data from HYSPLIT, CALIPSO and AIRS/Aqua. With the quasi-synchronization observations by ALADIN and CALIOP, combining the wind vectors and relative humidity, the dust horizontal fluxes are calculated. From this study, it is found that the dust event generated on 14 and 15 June 2020 from Sahara Desert in North Africa, and then dispersed and transported westward over the Atlantic Ocean, and finally deposited in the Atlantic Ocean, the Americas and the Caribbean Sea. During the transport and deposition processes, the dust plumes are trapped in the Northeasterly Trade-wind zone between the latitudes of 5° N and 30° N and altitudes of 0 km and 6 km (in this paper we name this space area as “Saharan dust eastward transport tunnel”). From the measurement results on 19 June 2020, influenced by the hygroscopic effect and mixing with other types aerosols, the backscatter coefficients of dust plumes are increasing along the transport routes, with 3.88 × 10−6 ± 2.59 × 10−6 m−1 sr−1 in “dust portion during emission phase”, 7.09 × 10−6 ± 3.34 × 10−6 m−1 sr−1 in “dust portion during development phase” and 7.76 × 10−6 ± 3.74 × 10−6 m−1 sr−1 in “dust portion during deposition phase”. Finally, the horizontal fluxes at different dust parts and heights on 19 June and on entire transport routine during transportation are computed. On 19 June, the dust horizontal fluxes are about 2.17 ± 1.83 mg m−2 s−1 in dust portion during emission phase, 2.72 ± 1.89 mg m−2 s−1 in dust portion during development phase and 3.01 ± 2.77 mg m−2 s−1 in dust portion during deposition phase. In the whole life-time of the dust event, the dust horizontal fluxes are about 1.30 ± 1.07 mg m−2 s−1 on 15 June 2020, 2.62 ± 1.88 mg m−2 s−1 on 16 June 2020, 2.72 ± 1.89 mg m−2 s−1 on 19 June 2020, 1.98 ± 1.41 mg m−2 s−1 on 24 June 2020 and 2.11 ± 1.74 mg m−2 s−1 on 27 June 2020. From this study, it is found that the minimum of the fluxes appears when the dust event is initially generated on 15 June. During the dust development stage, the horizontal fluxes gradually increase and reach to the maximum value on 19 June with the enhancement of the dust event. Then, the horizontal fluxes gradually decrease since most of the dust deposited in the Atlantic Ocean, the Americas and the Caribbean Sea. Combining the Chlorophyll concentrations data provided by MODIS-Aqua, the Saharan Dust is found transported across the oligotrophic regions Atlantic Ocean towards the Americas and Caribbean Sea, which are also oligotrophic regions. The mineral dust delivers micronutrients including soluble Fe and P to the deposition zones and has the potential to fertilizing the ocean and increase the primary productivity in the Atlantic Ocean and Caribbean Sea.


Sign in / Sign up

Export Citation Format

Share Document