scholarly journals The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis

2021 ◽  
Author(s):  
Felix Ploeger ◽  
Mohamadou Diallo ◽  
Edward Charlesworth ◽  
Paul Konopka ◽  
Bernard Legras ◽  
...  

Abstract. This paper investigates the global stratospheric Brewer–Dobson circulation (BDC) in the ERA5 meteorological reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The analysis is based on simulations of stratospheric mean age of air, including the full age spectrum, with the Lagrangian transport model CLaMS, driven by winds and total diabatic heating rates from the reanalysis. ERA5-based results are compared to those of the preceding ERA–Interim reanalysis. Our results show a significantly slower BDC for ERA5 than for ERA–Interim, manifesting in weaker diabatic heating rates and larger age of air. In the tropical lower stratosphere, heating rates are 30–40 % weaker in ERA5, likely correcting a known bias in ERA–Interim. Above, ERA5 age of air appears slightly high-biased and the BDC slightly slow compared to tracer observations. The age trend in ERA5 over 1989–2018 is negative throughout the stratosphere, as climate models predict in response to global warming. However, the age decrease is not linear over the period but exhibits steplike changes which could be caused by muti-annual variability or changes in the assimilation system. Over the 2002–2012 period, ERA5 age shows a similar hemispheric dipole trend pattern as ERA–Interim, with age increasing in the NH and decreasing in the SH. Shifts in the age spectrum peak and residual circulation transit times indicate that reanalysis differences in age are likely caused by differences in the residual circulation. In particular, the shallow BDC branch accelerates similarly in both reanalyses while the deep branch accelerates in ERA5 and decelerates in ERA–Interim.

2021 ◽  
Author(s):  
Felix Ploeger ◽  
Mohamadou Diallo ◽  
Edward Charlesworth ◽  
Paul Konopka ◽  
Bernard Legras ◽  
...  

<p>This paper investigates the global stratospheric Brewer-Dobson circulation (BDC) in the ERA5 meteorological reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The analysis is based on simulations of stratospheric mean age of air, including the full age spectrum, with the Lagrangian transport model CLaMS, driven by winds and total diabatic heating rates from the reanalysis. ERA5-based results are compared to those of the preceding ERA-Interim reanalysis. Our results show a significantly slower BDC for ERA5 than for ERA-Interim, manifesting in weaker diabatic heating rates and larger age of air. In the tropical lower stratosphere, heating rates are 30-40% weaker in ERA5, likely correcting a known bias in ERA-Interim. Above, ERA5 age of air appears slightly high-biased and the BDC slightly slow compared to tracer observations. The age trend in ERA5 over 1989-2018 is negative throughout the stratosphere, as climate models predict in response to global warming. However, the age decrease is not linear over the period but exhibits steplike changes which could be caused by muti-annual variability or changes in the assimilation system. Over the 2002-2012 period, ERA5 age shows a similar hemispheric dipole trend pattern as ERA-Interim, with age increasing in the NH and decreasing in the SH. Shifts in the age spectrum peak and residual circulation transit times indicate that reanalysis differences in age are likely caused by differences in the residual circulation. In particular, the shallow BDC branch accelerates similarly in both reanalyses while the deep branch accelerates in ERA5 and decelerates in ERA-Interim.</p>


2021 ◽  
Vol 21 (11) ◽  
pp. 8393-8412
Author(s):  
Felix Ploeger ◽  
Mohamadou Diallo ◽  
Edward Charlesworth ◽  
Paul Konopka ◽  
Bernard Legras ◽  
...  

Abstract. This paper investigates the global stratospheric Brewer–Dobson circulation (BDC) in the ERA5 meteorological reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The analysis is based on simulations of stratospheric mean age of air, including the full age spectrum, with the Lagrangian transport model CLaMS (Chemical Lagrangian Model of the Stratosphere), driven by reanalysis winds and total diabatic heating rates. ERA5-based results are compared to results based on the preceding ERA-Interim reanalysis. Our results show a significantly slower BDC for ERA5 than for ERA-Interim, manifesting in weaker diabatic heating rates and higher age of air. In the tropical lower stratosphere, heating rates are 30 %–40 % weaker in ERA5, likely correcting a bias in ERA-Interim. At 20 km and in the Northern Hemisphere (NH) stratosphere, ERA5 age values are around the upper margin of the uncertainty range from historical tracer observations, indicating a somewhat slow–biased BDC. The age trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, as climate models predict in response to global warming. However, the age decrease is not linear but steplike, potentially caused by multi-annual variability or changes in the observations included in the assimilation. During the 2002–2012 period, the ERA5 age shows a similar hemispheric dipole trend pattern as ERA-Interim, with age increasing in the NH and decreasing in the Southern Hemisphere (SH). Shifts in the age spectrum peak and residual circulation transit times indicate that reanalysis differences in age are likely caused by differences in the residual circulation. In particular, the shallow BDC branch accelerates in both reanalyses, whereas the deep branch accelerates in ERA5 and decelerates in ERA-Interim.


2018 ◽  
Vol 18 (19) ◽  
pp. 14715-14735 ◽  
Author(s):  
Simon Chabrillat ◽  
Corinne Vigouroux ◽  
Yves Christophe ◽  
Andreas Engel ◽  
Quentin Errera ◽  
...  

Abstract. We present a consistent intercomparison of the mean age of air (AoA) according to five modern reanalyses: the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), the Japanese Meteorological Agency's Japanese 55-year Reanalysis (JRA-55), the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR) and the National Aeronautics and Space Administration's Modern Era Retrospective analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2). The modeling tool is a kinematic transport model driven only by the surface pressure and wind fields. It is validated for ERA-I through a comparison with the AoA computed by another transport model. The five reanalyses deliver AoA which differs in the worst case by 1 year in the tropical lower stratosphere and more than 2 years in the upper stratosphere. At all latitudes and altitudes, MERRA-2 and MERRA provide the oldest values (∼5–6 years in midstratosphere at midlatitudes), while JRA-55 and CFSR provide the youngest values (∼4 years) and ERA-I delivers intermediate results. The spread of AoA at 50 hPa is as large as the spread obtained in a comparison of chemistry–climate models. The differences between tropical and midlatitude AoA are in better agreement except for MERRA-2. Compared with in situ observations, they indicate that the upwelling is too fast in the tropical lower stratosphere. The spread between the five simulations in the northern midlatitudes is as large as the observational uncertainties in a multidecadal time series of balloon observations, i.e., approximately 2 years. No global impact of the Pinatubo eruption can be found in our simulations of AoA, contrary to a recent study which used a diabatic transport model driven by ERA-I and JRA-55 winds and heating rates. The time variations are also analyzed through multiple linear regression analyses taking into account the seasonal cycles, the quasi-biennial oscillation and the linear trends over four time periods. The amplitudes of AoA seasonal variations in the lower stratosphere are significantly larger when using MERRA and MERRA-2 than with the other reanalyses. The linear trends of AoA using ERA-I confirm those found by earlier model studies, especially for the period 2002–2012, where the dipole structure of the latitude–height distribution (positive in the northern midstratosphere and negative in the southern midstratosphere) also matches trends derived from satellite observations of SF6. Yet the linear trends vary substantially depending on the considered period. Over 2002–2015, the ERA-I results still show a dipole structure with positive trends in the Northern Hemisphere reaching up to 0.3 yr dec−1. No reanalysis other than ERA-I finds any dipole structure of AoA trends. The signs of the trends depend strongly on the input reanalysis and on the considered period, with values above 10 hPa varying between approximately −0.4 and 0.4 yr dec−1. Using ERA-I and CFSR, the 2002–2015 trends are negative above 10 hPa, but using the three other reanalyses these trends are positive. Over the whole period (1989–2015) each reanalysis delivers opposite trends; i.e., AoA is mostly increasing with CFSR and ERA-I but mostly decreasing with MERRA, JRA-55 and MERRA-2. In view of this large disagreement, we urge great caution for studies aiming to assess AoA trends derived only from reanalysis winds. We briefly discuss some possible causes for the dependency of AoA on the input reanalysis and highlight the need for complementary intercomparisons using diabatic transport models.


2006 ◽  
Vol 6 (4) ◽  
pp. 7697-7714
Author(s):  
M. C. Parrondo ◽  
M. Yela ◽  
M. Gil ◽  
P. von der Gathen ◽  
H. Ochoa

Abstract. Radiosonde temperature profiles from Belgrano (78° S) and other Antarctic stations have been compared with European Centre for Medium-Range Weather Forecasts (ECMWF) data during the winter of 2003. Results show a bias in the operational model which is height and temperature dependent, being too cold at layers peaking at 80 and 25–30 hPa, and hence resulting in an overestimation of the predicted potential PSC areas. Here we show the results of the comparison by considering the possibility of a bias in the sondes at extremely low temperatures and discuss the potential implications that this bias might have on the ozone depletion computed by Climate Transport Model based on ECMWF temperature fields.


2014 ◽  
Vol 14 (23) ◽  
pp. 12803-12814 ◽  
Author(s):  
J. Aschmann ◽  
J. P. Burrows ◽  
C. Gebhardt ◽  
A. Rozanov ◽  
R. Hommel ◽  
...  

Abstract. Chemistry–climate models predict an acceleration of the upwelling branch of the Brewer–Dobson circulation as a consequence of increasing global surface temperatures, resulting from elevated levels of atmospheric greenhouse gases. The observed decrease of ozone in the tropical lower stratosphere during the last decades of the 20th century is consistent with the anticipated acceleration of upwelling. However, more recent satellite observations of ozone reveal that this decrease has unexpectedly stopped in the first decade of the 21st century, challenging the implicit assumption of a continuous acceleration of tropical upwelling. In this study we use three decades of chemistry-transport-model simulations (1980–2013) to investigate this phenomenon and resolve this apparent contradiction. Aside from a high-bias between 1985–1990, our model is able to reproduce the observed tropical lower stratosphere ozone record. A regression analysis identifies a significant decrease in the early period followed by a statistically robust trend-change after 2002, in qualitative agreement with the observations. We demonstrate that this trend-change is correlated with structural changes in the vertical transport, represented in the model by diabatic heating rates taken from the reanalysis product Era-Interim. These changes lead to a hiatus in the acceleration of tropical upwelling between 70–30 hPa and a southward shift of the tropical pipe at 30 and 100 hPa during the past decade, which appear to be the primary causes for the observed trend-change in ozone.


2018 ◽  
Author(s):  
Simon Chabrillat ◽  
Corinne Vigouroux ◽  
Yves Christophe ◽  
Andreas Engel ◽  
Quentin Errera ◽  
...  

Abstract. We present a consistent intercomparison of the mean Age of Air (AoA) according to five modern reanalyses: the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), the Japanese Meteorological Agency’s Japanese 55-year Reanalysis (JRA-55), the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR) and the National Aeronautics and Space Administration’s Modern Era Retrospective-analysis for Research Applications version 1 (MERRA) and version 2 (MERRA-2). The modeling tool is a kinematic transport model driven only by the surface pressure and wind fields. It is validated for ERA-I through a comparison with the AoA computed by another transport model. The five reanalyses deliver AoA which differ in the worst case by one year in the tropical lower stratosphere and more than two years in the upper stratosphere. At all latitudes and altitudes, MERRA-2 and MERRA provide the oldest values (~ 5–6 years in mid-stratosphere at mid-latitudes) while JRA-55 and CFSR provide the youngest values (~ 4 years) and ERA-I delivers intermediate results. The spread of AoA at 50 hPa is as large as the spread obtained in a comparison of Chemistry-Climate Models. The differences between tropical and mid-latitudes AoA are in better agreement except for MERRA-2. Compared with in-situ observations, they indicate that the upwelling is too fast in the tropical lower stratosphere. The general hierarchy of reanalyses delivering older AoA (MERRA, MERRA-2) and younger AoA (JRA-55, CFSR) holds during the whole 1989–2015 period, with AoA derived from ERA-I keeping intermediate values. The spread between the five simulations in the northern mid-latitudes is as large as the observational uncertainties in a multidecadal time series of balloon observations, i.e., approximately two years. No global impact of the Pinatubo eruption can be found in our simulations of AoA, contrarily to a recent study which used a diabatic transport model driven by ERA-I and JRA-55 winds and heating rates. The time variations are also analyzed through multiple linear regression analyses taking into account the seasonal cycles, the Quasi-Biennal Oscillation and the linear trends over four time periods. The amplitudes of AoA seasonal variations in the lower stratosphere are significantly larger using MERRA and MERRA-2 than with the other reanalyses (up to twice as large at the 50 hPa pressure level). The linear trends of AoA using ERA-I confirm those found by earlier model studies, especially for the period 2002–2012 where the dipole structure of the latitude-height distribution (positive in the northern mid-stratosphere and negative in the southern mid-stratosphere) also matches trends derived from satellite observations of SF6. Yet the linear trends vary considerably depending on the considered period. Over 2002–2015 the ERA-I results still show a dipole structure but it is much less pronounced, with positive trends in the northern hemisphere remaining significant only in the polar lower stratosphere (where they reach 0.2 years per decade). No reanalysis other than ERA-I finds any dipole structure of AoA trends. The signs of the trends depend strongly on the input reanalysis and on the considered period, with values above 10 hPa varying between approximately −0.4 and 0.4 years per decade. Using ERA-I and CFSR, the 2002–2015 trends are negative above 10 hPa but using the three other reanalyses these trends are positive. Over the whole period 1989–2015 each reanalysis delivers opposite trends, i.e., AoA is mostly increasing with CFSR and ERA-I but mostly decreasing with MERRA, JRA-55 and MERRA-2. In view of these large disagreements, we urge great caution for studies aiming to assess AoA trends derived only from reanalysis winds. We briefly discuss some possible causes for the dependency of AoA on the input reanalysis and highlight the need for complementary intercomparisons using diabatic transport models.


2022 ◽  
Author(s):  
Felix Ploeger ◽  
Hella Garny

Abstract. Despite the expected opposite effects of ozone recovery, the stratospheric Brewer-Dobson circulation (BDC) has been found to weaken in the Northern hemisphere (NH) relative to the Southern hemisphere (SH) in recent decades, inducing substantial effects on chemical composition. We investigate hemispheric asymmetries in BDC changes since about 2000 in simulations with the transport model CLaMS driven with different reanalyses (ERA5, ERA-Interim, JRA-55, MERRA-2) and contrast those to a suite of free-running climate model simulations. We find that age of air increases robustly in the NH stratosphere relative to the SH in all reanalyses considered. Related nitrous oxide changes agree well between reanalysis-driven simulations and satellite measurements, providing observational evidence for the hemispheric asymmetry in BDC changes. Residual circulation metrics further show that the composition changes are caused by structural BDC changes related to an upward shift and strengthening of the deep BDC branch, resulting in longer transit times, and a downward shift and weakening shallow branch in the NH relative to the SH. All reanalyses agree on this mechanism. Although climate model simulations show that ozone recovery will lead to overall reduced circulation and age of air trends, the hemispherically asymmetric signal in circulation trends is small compared to internal variability. Therefore, the observed circulation trends over the recent past are not in contradiction to expectations from climate models. Furthermore, the hemispheric asymmetry in BDC trends imprints on the composition of the lower stratosphere and the signal might propagate into the troposphere, potentially affecting composition down to the surface.


2018 ◽  
Author(s):  
Mohamadou Diallo ◽  
Paul Konopka ◽  
Michelle L. Santee ◽  
Rolf Müller ◽  
Mengchu Tao ◽  
...  

Abstract. The stratospheric Brewer–Dobson circulation (BD-circulation) determines the transport and lifetime of key radiatively active trace gases and further impacts surface climate through downward coupling. Here, we quantify the variability in the lower stratospheric BD-circulation induced by the El Nino Southern Oscillation (ENSO), using satellite trace gas measurements and simulations with the Lagrangian chemistry transport model, CLaMS, driven by ERA-Interim and JRA-55 reanalyses. We show that despite discrepancies in the deseasonalised ozone (O3) mixing ratios between CLaMS simulations and satellite observations, the patterns of changes in the lower stratospheric O3 anomalies induced by ENSO agree remarkably well over the 2005–2016 period. Particularly during the most recent El Niño in 2015–2016, both satellite observations and CLaMS simulations show the largest negative tropical O3 anomaly in the record. Regression analysis of different metrics of the BD-circulation strength, including mean age of air, vertical velocity, residual circulation and age spectrum, shows clear evidence for structural changes of the BD-circulation in the lower stratosphere induced by El Niño, consistent with observed O3 anomalies. These structural changes during El Niño include a weakening of the transition branch of the BD-circulation between about 370–420 K (∼ 100–70 hPa) and equatorward of about 60° and, a strengthening of the shallow branch at the same latitudes and between about 420–500 K (∼ 70–30 hPa). The strengthening of the shallow branch induces negative tropical O3 anomalies due to enhanced tropical upwelling, while the weakening of the transition branch combined with enhanced downwelling due to the strengthening shallow branch leads to positive O3 anomalies in the extratropical upper troposphere-lower stratosphere (UTLS). Our results suggest that a shift of the ENSO basic state toward more frequent El Niño-like conditions in a warming future climate will substantially alter UTLS trace gas distributions due to these changes in the vertical structure of the stratospheric circulation.


2009 ◽  
Vol 9 (5) ◽  
pp. 18511-18543 ◽  
Author(s):  
J. Aschmann ◽  
B. M. Sinnhuber ◽  
E. L. Atlas ◽  
S. M. Schauffler

Abstract. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.


2014 ◽  
Vol 14 (23) ◽  
pp. 12855-12869 ◽  
Author(s):  
K. Sagi ◽  
D. Murtagh ◽  
J. Urban ◽  
H. Sagawa ◽  
Y. Kasai

Abstract. The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station observed ozone in the stratosphere with high precision from October 2009 to April 2010. Although SMILES measurements only cover latitudes from 38° S to 65° N, the combination of data assimilation methods and an isentropic advection model allows us to quantify the ozone depletion in the 2009/2010 Arctic polar winter by making use of the instability of the polar vortex in the northern hemisphere. Ozone data from both SMILES and Odin/SMR (Sub-Millimetre Radiometer) for the winter were assimilated into the Dynamical Isentropic Assimilation Model for OdiN Data (DIAMOND). DIAMOND is an off-line wind-driven transport model on isentropic surfaces. Wind data from the operational analyses of the European Centre for Medium- Range Weather Forecasts (ECMWF) were used to drive the model. In this study, particular attention is paid to the cross isentropic transport of the tracer in order to accurately assess the ozone loss. The assimilated SMILES ozone fields agree well with the limitation of noise induced variability within the SMR fields despite the limited latitude coverage of the SMILES observations. Ozone depletion has been derived by comparing the ozone field acquired by sequential assimilation with a passively transported ozone field initialized on 1 December 2009. Significant ozone loss was found in different periods and altitudes from using both SMILES and SMR data: The initial depletion occurred at the end of January below 550 K with an accumulated loss of 0.6–1.0 ppmv (approximately 20%) by 1 April. The ensuing loss started from the end of February between 575 K and 650 K. Our estimation shows that 0.8–1.3 ppmv (20–25 %) of O3 has been removed at the 600 K isentropic level by 1 April in volume mixing ratio (VMR).


Sign in / Sign up

Export Citation Format

Share Document