scholarly journals Review of “Effects of Liquid-Liquid Phase Separation and Relative Humidity on the Heterogeneous OH Oxidation of Inorganic-Organic Aerosols: Insights from Methylglutaric Acid/Ammonium Sulfate Particles” by Hoi Ki Lam et al.

2020 ◽  
Author(s):  
Anonymous
2013 ◽  
Vol 13 (23) ◽  
pp. 11723-11734 ◽  
Author(s):  
Y. You ◽  
L. Renbaum-Wolff ◽  
A. K. Bertram

Abstract. As the relative humidity varies from high to low values in the atmosphere, particles containing organic species and inorganic salts may undergo liquid–liquid phase separation. The majority of the laboratory work on this subject has used ammonium sulfate as the inorganic salt. In the following we studied liquid–liquid phase separation in particles containing organics mixed with the following salts: ammonium sulfate, ammonium bisulfate, ammonium nitrate and sodium chloride. In each experiment one organic was mixed with one inorganic salt and the liquid–liquid phase separation relative humidity (SRH) was determined. Since we studied 23 different organics mixed with four different salts, a total of 92 different particle types were investigated. Out of the 92 types, 49 underwent liquid–liquid phase separation. For all the inorganic salts, liquid–liquid phase separation was never observed when the oxygen-to-carbon elemental ratio (O : C) &amp;geq; 0.8 and was always observed for O : C < 0.5. For 0.5 &amp;leq; O : C < 0.8, the results depended on the salt type. Out of the 23 organic species investigated, the SRH of 20 organics followed the trend: (NH4)2SO4 &amp;geq; NH4HSO4 &amp;geq; NaCl &amp;geq; NH4NO3. This trend is consistent with previous salting out studies and the Hofmeister series. Based on the range of O : C values found in the atmosphere and the current results, liquid–liquid phase separation is likely a frequent occurrence in both marine and non-marine environments.


2014 ◽  
Vol 14 (16) ◽  
pp. 23341-23373
Author(s):  
Y. You ◽  
A. K. Bertram

Abstract. Atmospheric particles containing organic species and inorganic salts may undergo liquid–liquid phase separation when the relative humidity varies between high and low values. To better understand the parameters that affect liquid–liquid phase separation in atmospheric particles, we studied the effects of molecular weight and temperature on liquid–liquid phase separation in particles containing one organic species mixed with ammonium sulfate. In the molecular weight dependent studies, we measured liquid–liquid phase separation relative humidity (SRH) in particles containing ammonium sulfate and organic species with large molecular weights (up to 1153 Da). These results were combined with recent studies of liquid–liquid phase separation in the literature to assess if molecular weight is a useful parameter for predicting SRH. The combined results, which include results from 33 different particle types, illustrate that SRH does not depend strongly on molecular weight (i.e. a clear relationship between molecular weight and SRH was not observed). In the temperature dependent studies, we measured liquid–liquid phase separation in 20 particle types at 244 ± 1 K, 263 ± 1 K, and 278 ± 1 K, as well as 290 ± 1 K for a few of these particle types. These new results were combined with previous measurements of the same particle types at 290 ± 1 K. The combined SRH data illustrate that for the particle types studied the SRH does not depend strongly on temperature. At most the SRH varied by 9.7% as the temperature varied from 290 to 244 K. In addition, for all the particle types studied and at all the temperatures studied, liquid–liquid phase separation was always observed when the O : C < 0.57, frequently observed when 0.57 ≤ O : C < 0.8, and never observed when O : C ≥ 0.8. These combined results suggest that liquid–liquid phase separation is likely a common occurrence in the atmospheric particles at temperatures from 244–290 K. Additional studies at temperatures < 244 K and with other organic species are still needed.


2013 ◽  
Vol 13 (7) ◽  
pp. 20081-20109 ◽  
Author(s):  
Y. You ◽  
L. Renbaum-Wolff ◽  
A. K. Bertram

Abstract. As the relative humidity varies from high to low values in the atmosphere, particles containing organics and inorganic salts may undergo liquid–liquid phase separation. The majority of the laboratory work on this subject has used ammonium sulfate as the inorganic salt. In the following we studied liquid–liquid phase separation in particles containing organics mixed with the following salts: ammonium sulfate, ammonium bisulfate, ammonium nitrate and sodium chloride. In each experiment one organic was mixed with one inorganic salt and the liquid–liquid phase separation relative humidity (SRH) was determined. Since we studied 23 different organics mixed with four different salts, a total of 92 different particle types were investigated. Out of the 92 types, 49 underwent liquid–liquid phase separation. For all the inorganic salts, liquid–liquid phase separation was never observed when the oxygen-to-carbon elemental ratio (O:C) was ≥ 0.8 and was always observed for O:C<0.5. For 0.5 ≤ O:C< 0.8, the results depended on the salt type. Out of the 23 organics investigated, the SRH of 20 organics followed the trend: (NH4)2SO4 ≥ NH4HSO4 ≥ NaCl ≥ NH4NO3. This trend is consistent with previous salting-out studies and the Hofmeister series. Based on the range of O:C values found in the atmosphere and the current results, liquid–liquid phase separation is likely a frequent occurrence in both marine and non-marine environments.


2011 ◽  
Vol 11 (10) ◽  
pp. 29141-29194 ◽  
Author(s):  
M. Song ◽  
C. Marcolli ◽  
U. K. Krieger ◽  
A. Zuend ◽  
T. Peter

Abstract. Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS) and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5–7 carbon atoms (C5, C6 and C7) having oxygen-to-carbon atomic ratios (O:C) of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS). With micrometer-sized particles of C5/AS/H2O, C6/AS/H2O and C7/AS/H2O as model systems deposited on a hydrophobically coated substrate, laboratory experiments were conducted for various organic-to-inorganic dry mass ratios (OIR) using optical microscopy and Raman spectroscopy. When exposed to cycles of relative humidity (RH), each system showed significantly different phase transitions. While the C5/AS/H2O particles showed no LLPS with OIR = 2:1, 1:1 and 1:4 down to 20% RH, the C6/AS/H2O and C7/AS/H2O particles exhibit LLPS upon drying at RH 50% to 85% and ~90%, respectively, via spinodal decomposition, growth of a second phase from the particle surface or nucleation-and-growth mechanisms depending on the OIR. This suggests that LLPS commonly occurs within the range of O:C<0.7 in tropospheric organic-inorganic aerosols. To support the comparison and interpretation of the experimentally observed phase transitions, thermodynamic equilibrium calculations were performed with the AIOMFAC model. For the C7/AS/H2O and C6/AS/H2O systems, the calculated phase diagrams agree well with the observations while for the C5/AS/H2O system LLPS is predicted by the model at RH below 60% and higher AS concentration, but was not observed in the experiments. Both core-shell structures and partially engulfed structures were observed for the investigated particles, suggesting that such morphologies might also exist in tropospheric aerosols.


2015 ◽  
Vol 15 (3) ◽  
pp. 1351-1365 ◽  
Author(s):  
Y. You ◽  
A. K. Bertram

Abstract. Atmospheric particles containing organic species and inorganic salts may undergo liquid–liquid phase separation when the relative humidity varies between high and low values. To better understand the parameters that affect liquid–liquid phase separation in atmospheric particles, we studied the effects of molecular weight and temperature on liquid–liquid phase separation in particles containing one organic species mixed with either ammonium sulfate or ammonium bisulfate. In the molecular-weight-dependent studies, we measured liquid–liquid phase separation relative humidity (SRH) in particles containing ammonium sulfate and organic species with large molecular weights (up to 1153 Da). These results were combined with recent studies of liquid–liquid phase separation in the literature to assess if molecular weight is a useful parameter for predicting SRH. The combined results, which include results from 33 different particle types, illustrate that SRH does not depend strongly on molecular weight (i.e., a clear relationship between molecular weight and SRH was not observed). In the temperature-dependent studies, we measured liquid–liquid phase separation in particles containing ammonium sulfate mixed with 20 different organic species at 244 ± 1 K, 263 ± 1 K, and 278 ± 1 K; a few particles were also studied at 290 ± 1 K. These new results were combined with previous measurements of the same particle types at 290 ± 1 K. The combined SRH data illustrate that for the organic–ammonium sulfate particles studied, the SRH does not depend strongly on temperature. At most the SRH varied by 9.7% as the temperature varied from 290 to 244 K. The high SRH values (> 65%) in these experiments may explain the lack of temperature dependence. Since water is a plasticizer, high relative humidities can lead to high water contents, low viscosities, and high diffusion rates in the particles. For these cases, unless the temperature is very low, liquid–liquid phase separation is not expected to be kinetically inhibited. The occurrence of liquid–liquid phase separation and SRH did depend strongly on temperature over the range of 290–244 K for particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium bisulfate. For this particle type, a combination of low temperatures and low water content likely favored kinetic inhabitation of the liquid–liquid phase separation by slow diffusion rates in highly viscous particles. The combined results suggest that liquid–liquid phase separation is likely a common occurrence in atmospheric particles at temperatures from 244–290 K, although particles that do not undergo liquid–liquid phase separation are also likely common.


2011 ◽  
Vol 11 (6) ◽  
pp. 17759-17788 ◽  
Author(s):  
A. K. Bertram ◽  
S. T. Martin ◽  
S. J. Hanna ◽  
M. L. Smith ◽  
A. Bodsworth ◽  
...  

Abstract. Individual particles that on a mass basis consist dominantly of the components ammonium sulfate, organic material, and water are a common class of submicron particles found in today's atmosphere. Here we use (1) the organic-to-sulfate (org:sulf) mass ratio of the overall particle and (2) the oxygen-to-carbon (O:C) elemental ratio of the organic component as input variables in parameterisations that predict the critical relative humidity of several different types of particle phase transitions. These transitions include liquid-liquid phase separation (SRH), efflorescence (ERH), and deliquescence (DRH). Experiments were conducted by optical microscopy for 11 different oxygenated organic-ammonium sulfate systems covering the range 0.1 < org:sulf <12.8 and 0.29 < O:C < 1.33. These new data, in conjunction with other data already available in the literature, were used to develop the parameterisations SRH(org:sulf, O:C), ERH(org:sulf, O:C), and DRH(org:sulf, O:C). The parameterisations correctly predicted SRH within 15 % RH for 86 % of the measurements, ERH within 5 % for 86 % of the measurements, and DRH within 5 % for 95 % of the measurements. The applicability of the derived parameterisations beyond the training data set was tested against observations for organic-sulfate particles produced in an environmental chamber. The organic component consisted of secondary organic material produced by the oxidation of isoprene, α-pinene, and β-caryophyllene. The predictions of the parameterisations were also tested against data from the Southern Great Plains, Oklahoma, USA. The observed ERH and DRH values for both the chamber and field data agreed within 5 % RH with the value predicted by the parameterisations using the measured org:sulf and O:C ratios as the input variables.


2012 ◽  
Vol 12 (9) ◽  
pp. 3857-3882 ◽  
Author(s):  
A. Zuend ◽  
J. H. Seinfeld

Abstract. The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality) and EVAPORATION (for pure compound vapor pressures) with oxidation product information from the Master Chemical Mechanism (MCM) for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH). Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1) non-ideality in the condensed phase needs to be considered and (2) liquid-liquid phase separation is a consequence of considerable deviations from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C) ratio is lower than ~0.6, as in the case of α-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model) computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the α-pinene system are also discussed from a more general point of view.


2012 ◽  
Vol 12 (12) ◽  
pp. 30951-30988
Author(s):  
G. P. Schill ◽  
M. A. Tolbert

Abstract. Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2:1 mixtures of organic polyols (1,2,6-hexanetriol, and 1:1 1,2,6-hexanetriol +2,2,6,6-tetrakis(hydroxymethyl)cycohexanol) and ammonium sulfate from 240–265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210–235 K. Raman mapping and volume-geometry analysis indicates that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.


Sign in / Sign up

Export Citation Format

Share Document