scholarly journals Evolution of the stratospheric polar vortex edge intensity and duration in the Southern hemisphere over the 1979–2020 period

2021 ◽  
Author(s):  
Audrey Lecouffe ◽  
Sophie Godin-Beekmann ◽  
Andrea Pazmiño ◽  
Alain Hauchecorne

Abstract. The intensity and position of the Southern Hemisphere stratospheric polar vortex edge is evaluated as a function of equivalent latitude over the 1979–2020 period on three isentropic levels (475 K, 550 K and 675 K) from ECMWF ERA-Interim reanalysis. The study also includes an analysis of the onset and breakup dates of the polar vortex, which are determined from wind thresholds (e.g. 15.2 m.s−1, 20 m.s−1and 25 m.s−1) along the vortex edge. The vortex edge is stronger in late winter, over September–October – November with the period of strongest intensity occurring later at the lowermost level. A lower variability of the edge position is observed during the same period. Long-term increase of the vortex edge intensity and break-up date is observed over the 1979–1999 period, linked to the increase of the ozone hole. Long-term decrease of the vortex onset date related to the 25 m.s−1wind threshold is also observed at 475 K during this period. The solar cycle and to a lower extent the quasi-biennal oscillation (QBO) and El Niño Southern Oscillation (ENSO) modulate the inter-annual evolution of the strength of the vortex edge and the vortex breakup dates. Stronger vortex edge and longer vortex duration is observed in solar minimum (minSC) years, with the QBO and ENSO further modulating the solar cycle influence, especially at 475 K and 550 K: during West QBO (wQBO) phases, the difference between vortex edge intensity for minSC and maxSC years is smaller than during East QBO (eQBO) phases. The polar vortex edge is stronger and lasts longer for maxSC/wQBO years than for maxSC/eQBO years. ENSO has a weaker impact but the vortex edge is somewhat stronger during cold ENSO phases for both minSC and maxSC years.

2017 ◽  
Vol 30 (18) ◽  
pp. 7125-7139 ◽  
Author(s):  
Nicholas J. Byrne ◽  
Theodore G. Shepherd ◽  
Tim Woollings ◽  
R. Alan Plumb

Abstract Statistical models of climate generally regard climate variability as anomalies about a climatological seasonal cycle, which are treated as a stationary stochastic process plus a long-term seasonally dependent trend. However, the climate system has deterministic aspects apart from the climatological seasonal cycle and long-term trends, and the assumption of stationary statistics is only an approximation. The variability of the Southern Hemisphere zonal-mean circulation in the period encompassing late spring and summer is an important climate phenomenon and has been the subject of numerous studies. It is shown here, using reanalysis data, that this variability is rendered highly nonstationary by the organizing influence of the seasonal breakdown of the stratospheric polar vortex, which breaks time symmetry. It is argued that the zonal-mean tropospheric circulation variability during this period is best viewed as interannual variability in the transition between the springtime and summertime regimes induced by variability in the vortex breakdown. In particular, the apparent long-term poleward jet shift during the early-summer season can be more simply understood as a delay in the equatorward shift associated with this regime transition. The implications of such a perspective for various open questions are discussed.


2018 ◽  
Vol 99 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Marlene Kretschmer ◽  
Dim Coumou ◽  
Laurie Agel ◽  
Mathew Barlow ◽  
Eli Tziperman ◽  
...  

Abstract The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Niño–Southern Oscillation (ENSO) variability is included as well.


2021 ◽  
Author(s):  
Juliana Jaen ◽  
Toralf Renkwitz ◽  
Jorge L. Chau ◽  
Maosheng He ◽  
Peter Hoffmann ◽  
...  

Abstract. Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (~54 °N) and northern Norway (~69 °N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower thermosphere summer length (MLT-SL) using SMR and PRR winds, and (2) the mesosphere summer length (M-SL) using PRR and MLS. Under both definitions, the summer begins around April and ends around mid-September. The largest year to year variability is found in the summer beginning in both definitions, particularly at high-latitudes, possibly due to the influence of the polar vortex. At high-latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL, as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity, as well as large-scale atmospheric influences (e.g. quasi-biennial oscillations (QBO), El Niño-southern oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at mid-latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.


2021 ◽  
Author(s):  
Raphael Köhler ◽  
Dörthe Handorf ◽  
Ralf Jaiser ◽  
Klaus Dethloff

<p>Stratospheric pathways play an important role in connecting distant anomaly patterns to each other on seasonal timescales. As long-lived stratospheric extreme events can influence the large-scale tropospheric circulation on timescales of multiple weeks, stratospheric pathways have been identified as one of the main potential sources for subseasonal to seasonal predictability in mid-latitudes. These pathways have been shown to connect Arctic anomalies to lower latitudes and vice versa. However, there is an ongoing discussion on how strong these stratospheric pathways are and how they exactly work.</p><p> </p><p>In this context, we investigate two strongly discussed stratospheric pathways by analysing a suite of seasonal experiments with the atmospheric model ICON: On the one hand, the effect of El Niño-Southern Oscillation (ENSO) on the stratospheric polar vortex, and thus the circulation in mid and high latitudes in winter. And on the other hand, the effect of a rapidly changing Arctic on lower latitudes via the stratosphere. The former effect is simulated realistically by ICON, and the results from the ensemble simulations suggest that ENSO has an effect on the large-scale Northern Hemisphere winter circulation. The ICON experiments and the reanalysis exhibit a weakened stratospheric vortex in warm ENSO years. Furthermore, in particular in winter, warm ENSO events favour the negative phase of the Arctic Oscillation, whereas cold events favour the positive phase. The ICON simulations also suggest a significant effect of ENSO on the Atlantic-European sector in late winter. Unlike the effect of ENSO, ICON simulations and the reanalysis do not agree on the stratospheric pathway for Arctic-midlatitude linkages. Whereas the reanalysis exhibits a weakening of the stratospheric vortex in midwinter and a connected tropospheric negative Arctic Oscillation circulation response to amplified Arctic warming, this is not the case in the ICON simulations. Implications and potential reasons for this discrepancy are further analysed and discussed in this work.  </p>


2021 ◽  
Author(s):  
Marisol Osman ◽  
Theodore Shepherd ◽  
Carolina Vera

<p>The influence of El Niño Southern Oscillation (ENSO) and the Stratospheric Polar Vortex (SPV) on the zonal asymmetries in the Southern Hemisphere atmospheric circulation during spring and summer is examined. The main objective is to explore if the SPV can modulate the ENSO teleconnections in the extratropics. We use a large ensemble of seasonal hindcasts from the European Centre for Medium-Range Weather Forecasts Integrated Forecast System to provide a much larger sample size than is possible from the observations alone.</p><p>We find a small but statistically significant relationship between ENSO and the SPV, with El Niño events occurring with weak SPV and La Niña events occurring with strong SPV more often than expected by chance, in agreement with previous works. We show that the zonally asymmetric response to ENSO and SPV can be mainly explained by a linear combination of the response to both forcings, and that they can combine constructively or destructively. From this perspective, we find that the tropospheric asymmetries in response to ENSO are more intense when El Niño events occur with weak SPV and La Niña events occur with strong SPV, at least from September through December. In the stratosphere, the ENSO teleconnections are mostly confounded by the SPV signal. The analysis of Rossby Wave Source and of wave activity shows that both are stronger when El Niño events occur together with weak SPV, and when La Niña events occur together with strong SPV.</p>


2021 ◽  
Author(s):  
Audrey Lecouffe ◽  
Sophie Godin-Beekmann ◽  
Andrea Pazmiño ◽  
Alain Hauchecorne

<p>The stratospheric polar vortex in the Southern Hemisphere plays an important role in the intensity of the stratospheric ozone destruction during austral spring, which started in the late 1970s. The so-called ozone hole has in turn influenced the evolution of weather patterns in the Southern Hemisphere in the last decades (WMO, 2018). The Northern Hemisphere polar vortex is less stable because of larger dynamical activity in winter. It is thus less cold and polar arctic ozone losses are less important. The seasonal and interannual evolution of the polar vortex in both hemispheres has been analyzed using meteorological fields from the European Center for Meteorology Weather Forecasts ERA-Interim reanalyses and the MIMOSA model (Modélisation Isentrope du transport Méso-échelle de l’Ozone Stratosphérique par Advection, Hauchecorne et al., 2002). This model provides high spatial resolution potential vorticity (PV) and equivalent latitude fields at several isentropic levels (675K, 550K and 475K) that are used to evaluate the temporal evolution of the polar vortex edge. The edge of the vortex is computed on isentropic surfaces from the wind and gradient of PV as a function of equivalent latitude (e.g. Nash et al, 1996; Godin et al., 2001). On an interannual scale, the signature of some typical forcings driving stratospheric natural variability such as the 11-year solar cycle, the quasi-biennial oscillation (QBO), and El Niño Southern Oscillation (ENSO) is evaluated. The study includes analysis of the onset and breakup dates of the polar vortex, which are determined from the wind field along the vortex edge. Several threshold values, such as 15.2m/s, 20m/s and 25m/s following Akiyoshi et al. (2009) are used. Results on the seasonal and interannual evolution of the intensity and position of the vortex edge, as well as the onset and breakup dates of the Southern and Northern polar vortex edge over the 1979 – 2020 period will be shown.</p><p><strong>References:</strong></p><ul><li>Akiyoshi, H., Zhou, L., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T. A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios, Journal ofGeophysical Research: Atmospheres, 114, 2009.</li> <li>Godin S., V. Bergeret, S. Bekki, C. David, G. Mégie, Study of the interannual ozone loss and the permeability of the Antarctic Polar Vortex from long-term aerosol and ozone lidar measurements in Dumont d’Urville (66.4◦S, 140◦E), J. Geophys. Res., 106, 1311-1330, 2001.</li> <li>Hauchecorne, A., S. Godin, M. Marchand, B. Hesse, and C. Souprayen, Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity, J. Geophys. Res., 107 (D20), 8289, doi:10.1029/2001JD000491, 2002.</li> <li>Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R. (1996), An objective determination of the polar vortex using Ertel’s potential vorticity, Journal of geophysical research, VOL.101(D5), 9471- 9478</li> <li>World Meteorological Organization, Global Ozone Research and Monitoring Project – Report No. 58, 2018.</li> </ul>


2016 ◽  
Vol 29 (17) ◽  
pp. 6319-6328 ◽  
Author(s):  
Tao Li ◽  
Natalia Calvo ◽  
Jia Yue ◽  
James M. Russell ◽  
Anne K. Smith ◽  
...  

Abstract In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Niño strengthens the Brewer–Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at ~25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.


2007 ◽  
Vol 64 (4) ◽  
pp. 1267-1283 ◽  
Author(s):  
Charles D. Camp ◽  
Ka-Kit Tung

Abstract A statistical analysis of 51 years of NCEP–NCAR reanalysis data is conducted to isolate the separate effects of the 11-yr solar cycle (SC) and the equatorial quasi-biennial oscillation (QBO) on the Northern Hemisphere (NH) stratosphere in late winter (February–March). In a four-group [SC maximum (SC-max) versus minimum (SC-min) and east-phase versus west-phase QBO] linear discriminant analysis, the state of the westerly phase QBO (wQBO) during SC-min emerges as a distinct least-perturbed (and coldest) state of the stratospheric polar vortex, statistically well separated from the other perturbed states. Relative to this least-perturbed state, the SC-max and easterly QBO (eQBO) each independently provides perturbation and warming as does the combined perturbation of the SC-max–eQBO. All of these results (except the eQBO perturbation) are significant at the 95% confidence level as confirmed by Monte Carlo tests; the eQBO perturbation is marginally significant at the 90% level. This observational result suggests a conceptual change in understanding the interaction between solar cycle and QBO influences: while previous results imply a more substantial interaction, even to the extent that the warming due to SC-max is reversed to cooling by the eQBO, results suggest that the SC-max and eQBO separately warm the polar stratosphere from the least-perturbed state. While previous authors emphasize the importance of segregating the data according to the phase of the QBO, here the same polar warming by the solar cycle is found regardless of the phase of the QBO. The polar temperature is positively correlated with the SC, with a statistically significant zonal mean warming of approximately 4.6 K in the 10–50-hPa layer in the mean and 7.2 K from peak to peak. This magnitude of the warming in winter is too large to be explainable by UV radiation alone. The evidence seems to suggest that the polar warming in NH late winter during SC-max is due to the occurrence of sudden stratospheric warmings (SSWs), as noted previously by other authors. This hypothesis is circumstantially substantiated here by the similarity between the meridional pattern and timing of the warming and cooling observed during the SC-max and the known pattern and timing of SSWs, which has the form of large warming over the pole and small cooling over the midlatitudes during mid- and late winter. The eQBO is also known to precondition the polar vortex for the onset of SSWs, and it has been pointed out by previous authors that SSWs can occur during eQBO at all stages of the solar cycle. The additional perturbation due to SC-max does not double the frequency of occurrence of SSWs induced by the eQBO. This explains why the SC-max/eQBO years are not statistically warmer than either the SC-max/wQBO or SC minimum/eQBO years. The difference between two perturbed (warm) states (e.g., SC-max/eQBO versus SC-min/eQBO or SC-max/eQBO versus SC-max/wQBO), is small (about 0.3–0.4 K) and not statistically significant. It is this small difference between perturbed states, both warmer than the least-perturbed state, that in the past has been interpreted either as a reversal of SC-induced warming or as a reversal of QBO-induced warming.


2021 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Daniela I. V. Domeisen ◽  
...  

AbstractThe predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).


MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 349-358
Author(s):  
R. P. KANE

The 12-monthly running means of CFC-11 and CFC-12 were examined for 1977-1992. As observed by earlier workers, during 1977-1988, there was a rapid, almost linear increase of these compounds, ~70% in the northern and ~77% in the southern hemisphere. From 1988 up to 1992, growth rates were slower, more so for CFC-11 in the northern hemisphere. Superposed on this pattern were QBO, QTO (Quasi-Biennial and Quasi-Triennial Oscillations). A spectral analysis of the various series indicated the following. The 50 hPa low latitude zonal wind had one prominent QBO peak at 2.58 years and much smaller peaks at 2.00 (QBO) and 5.1 years. The Southern oscillation index represented by (T-D), Tahiti minus Darwin atmospheric pressure, had a prominent peak at 4.1 years and a smaller peak at 2.31 years. CFC-11 had only one significant peak at 3.7 years in the southern hemisphere, roughly similar to the 4.1 year (T-D) peak. CFC-12 had prominent QBO (2.16-2.33 years) in both the hemispheres and a QTO (3.6 years) in the southern hemisphere. For individual locations, CFC-11 showed barely significant QBO in the range (1.95-3.07 years), while CFC 12 showed strong QBO in the range (1.86-2.38 years). The difference in the spectral characteristics of CFC-11 and CFC 12 time series is attributed to differences in their lifetimes (44 and 180 years), source emission rates and transport processes.


Sign in / Sign up

Export Citation Format

Share Document