scholarly journals Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction

2021 ◽  
Vol 21 (17) ◽  
pp. 13397-13423 ◽  
Author(s):  
Ronny Engelmann ◽  
Albert Ansmann ◽  
Kevin Ohneiser ◽  
Hannes Griesche ◽  
Martin Radenz ◽  
...  

Abstract. An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition to continuously monitor aerosol and cloud layers in the central Arctic up to 30 km height. The expedition lasted from September 2019 to October 2020 and measurements were mostly taken between 85 and 88.5∘ N. The lidar was integrated into a complex remote-sensing infrastructure aboard the Polarstern. In this article, novel lidar techniques, innovative concepts to study aerosol–cloud interaction in the Arctic, and unique MOSAiC findings will be presented. The highlight of the lidar measurements was the detection of a 10 km deep wildfire smoke layer over the North Pole region between 7–8 km and 17–18 km height with an aerosol optical thickness (AOT) at 532 nm of around 0.1 (in October–November 2019) and 0.05 from December to March. The dual-wavelength Raman lidar technique allowed us to unambiguously identify smoke as the dominating aerosol type in the aerosol layer in the upper troposphere and lower stratosphere (UTLS). An additional contribution to the 532 nm AOT by volcanic sulfate aerosol (Raikoke eruption) was estimated to always be lower than 15 %. The optical and microphysical properties of the UTLS smoke layer are presented in an accompanying paper (Ohneiser et al., 2021). This smoke event offered the unique opportunity to study the influence of organic aerosol particles (serving as ice-nucleating particles, INPs) on cirrus formation in the upper troposphere. An example of a closure study is presented to explain our concept of investigating aerosol–cloud interaction in this field. The smoke particles were obviously able to control the evolution of the cirrus system and caused low ice crystal number concentration. After the discussion of two typical Arctic haze events, we present a case study of the evolution of a long-lasting mixed-phase cloud layer embedded in Arctic haze in the free troposphere. The recently introduced dual-field-of-view polarization lidar technique was applied, for the first time, to mixed-phase cloud observations in order to determine the microphysical properties of the water droplets. The mixed-phase cloud closure experiment (based on combined lidar and radar observations) indicated that the observed aerosol levels controlled the number concentrations of nucleated droplets and ice crystals.

2021 ◽  
Author(s):  
Kevin Ohneiser ◽  
Ronny Engelmann ◽  
Albert Ansmann ◽  
Martin Radenz ◽  
Hannes Griesche ◽  
...  

<p>The MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, lasting from September 2019 to October 2020, was the largest Arctic research initiative in history. The goal of the expedition was to take the closest look ever at the Arctic as the epicenter of global warming and to gain fundamental insights that are key to better understand global climate change. We continuously operated a multiwavelength aerosol/cloud Raman lidar aboard the icebreaker Polarstern, drifting through the Arctic Ocean trapped in the ice from October to May, and monitored aerosol and cloud layers in the Central Arctic up to 30 km height at latitudes mostly > 85°N. The lidar was integrated in a complex remote sensing infrastructure aboard Polarstern. A polarization Raman lidar is designed to separate the main continental aerosol components (mineral dust, wildfire smoke, anthropogenic haze, volcanic aerosol). Furthermore, the Polarstern lidar enabled us to study the impact of these different basic aerosol types on the evolution of Arctic mixed-phase and ice clouds.  The most impressive and unprecedented observation was the detection of a persistent, 10 km deep aerosol layer of aged wildfire smoke over the North Pole region between 8 and 18 km height from October 2019 until the beginning of May 2020. The wildfire smoke layers originated from severe and huge fires in Siberia, Alaska, and western North America in 2019 and may have contained mineral dust injected into the atmosphere over the hot fire places together with the smoke. We will present the main MOSAiC findings including a study of a long-lasting mixed-phase cloud layer evolving in Arctic haze (at heights below 6 km) and the role of mineral dust in the Arctic haze mixture to trigger heterogeneous ice formation. Furthermore, we present a case study developing in the smoke-dominated layer around 10 km height.</p>


2020 ◽  
Author(s):  
Ronny Engelmann ◽  
Albert Ansmann ◽  
Kevin Ohneiser ◽  
Hannes Griesche ◽  
Martin Radenz ◽  
...  

Abstract. An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, lasting from September 2019 to October 2020, to contiuously monitor aerosol and cloud layers in the Central Arctic up to 30 km height at latitudes mostly between 85° N and 88.5° N. The lidar was integrated in a complex remote sensing infrastructure aboard Polarstern. Modern aerosol lidar methods and new lidar techniques and concepts to explore aerosol-cloud interaction were applied for the first time in the Central Arctic. Aim of the introductory article is to provide an overview of the observational spectrum of the lidar products for representative measurement cases. Highlight of the lidar measurements was the detection of a 10 km deep wildfire smoke layer over the North Pole area from, on average, 7 km to 17 km height with an aerosol optical thickness (AOT) at 532 nm around 0.1 (in October–November 2019) and 0.05 from December to mid of March 2020. The wildfire smoke was trapped within the extraordinarily strong polar vortex and remained detectable until the beginning of May 2020. Arctic haze was also monitored and characterized in terms of backscatter, extinction, and extinction-to-backscatter ratio at 355 and 532 nm. High lidar ratios from 60–100 sr in lofted mixed haze and smoke plumes are indicative for the presence of strongly light-absorbing fine-mode particles. The AOT at 532 nm was of the order of 0.025 for the tropospheric haze layers. In addition, so-called cloud closure experiments were applied to Arctic mixed-phase cloud and cirrus observations. The good match between cloud condensation nucleus concentration (CCNC) and cloud droplet number concentration (CDNC) and, on the other hand, between ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) indicated a clear influence of aerosol particles on the evolution of the cloud systems. CDNC was mostly between 20 and 100 cm−3 in the liquid-water dominated cloud top layer. ICNC was of the order of 0.1–1 L−1. The study of the impact of wildfire smoke particles on cirrus formation revealed that heterogeneous ice formation with smoke particles (organic aerosol particles) as INPs may have prevailed. ICNC values of 10–40 L−1 were clearly below ICNC levels that would indicate homogeneous freezing.


2021 ◽  
Author(s):  
Kevin Ohneiser ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Christoph Ritter ◽  
Alexandra Chudnovsky ◽  
...  

Abstract. During the one-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition the German icebreaker Polarstern drifted through the Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85° N and 88.5° N. A multiwavelength polarization Raman lidar was operated aboard the research vessel and continuously monitored aerosol and cloud layers up to 30 km height. The highlight of the lidar measurements was the detection of a persistent, 10 km deep wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7–8 km to 17–18 km height. The smoke layer was present throughout the winter half year until the polar vortex, the strongest of the last 40 years, collapsed in late April 2020. The smoke originated from major fire events, especially from extraordinarily intense and long-lasting Siberian fires in July and August 2019. In this article, we summarize the main findings of our seven-month smoke observations and characterize the aerosol properties and decay of the stratospheric perturbation in terms of geometrical, optical, and microphysical properties. The UTLS aerosol optical thickness (AOT) at 532 nm ranged from 0.05–0.12 in October–November 2019 and was of the order of 0.03–0.06 during the central winter months (December–February). As an unambiguous sign of the dominance of smoke, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than the respective 532 nm lidar ratio. Mean values were 55 sr (355 nm) and 85 sr (532 nm). We further present a review of previous height resolved Arctic aerosol observations (remote sensing) in our study. For the first time, a coherent and representative view on the aerosol layering features in the Central Arctic from the surface up to 27 km height during the winter half year is presented. Finally, a potential impact of the wildfire smoke aerosol on the record-breaking ozone depletion over the Arctic in the spring of 2020 is discussed based on smoke, ozone, and polar stratospheric cloud observations.


2021 ◽  
Author(s):  
Igor Veselovskii ◽  
Qiaoyun Hu ◽  
Albert Ansmann ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
...  

Abstract. A remote sensing method, based on fluorescence lidar measurements, that allows to detect and to quantify the smoke content in upper troposphere and lower stratosphere (UTLS) is presented. The unique point of this approach is that, smoke and cirrus properties are observed in the same air volume simultaneously. In the article, we provide results of fluorescence and multiwavelength Mie-Raman lidar measurements performed at ATOLL observatory from Laboratoire d’Optique Atmosphérique, University of Lille, during strong smoke episodes in the summer and autumn seasons of 2020. The aerosol fluorescence was induced by 355 nm laser radiation and the fluorescence backscattering was measured in a single spectral channel, centered at 466 nm of 44 nm width. To estimate smoke properties, such as number, surface area and volume concentration, the conversion factors, which link the fluorescence backscattering and the smoke microphysical properties, are derived from the synergy of multiwavelength Mie-Raman and fluorescence lidar observations. Based on two case studies, we demonstrate that the fluorescence lidar technique provides possibility to estimate the smoke surface area concentration within freshly formed cirrus layers. This value was used in smoke INP parameterization scheme to predict ice crystal number concentrations in cirrus generation cells.


2018 ◽  
Author(s):  
Albert Ansmann ◽  
Holger Baars ◽  
Alexandra Chudnovsky ◽  
Moritz Haarig ◽  
Igor Veselovskii ◽  
...  

Abstract. Light extinction coefficients of 500 Mm−1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed with lidar in the stratosphere over Leipzig, Germany, on 22 August 2017. A pronounced smoke layer extended from 14–16 km height and was 3–4 km above the local tropopause. Optically dense layers of Canadian wildfire smoke reached central Europe 10 days after injection into the lower stratosphere caused by rather strong pyrocumulonimbus activity over western Canada. The smoke-related aerosol optical thickness (AOT) was close to 1.0 at 532 nm over Leipzig during the noon hours. We present detailed observations of this record-breaking smoke event in a series of two articles. In part 1, we provide an overview of Aerosol Robotic Network (AERONET) sun photometer observations and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of AOT and show lidar measurements documenting the aerosol layering and the very high particle extinction coefficients. In part 2 (Haarig et al., 2018), observations with three polarization/Raman lidars are presented, performed at Leipzig after sunset on 22 August to elucidate the optical and microphysical properties of the aged smoke. As shown in this part 1, smoke particles were found throughout the free troposphere (532 nm AOT of 0.3). A pronounced 2-km thick stratospheric smoke layer occurred from 14–16 km height (AOT of 0.6). AERONET and lidar observations indicate peak mass concentrations of 70–100 μg m−3 in the stratosphere around noon and a well-defined (accumulation mode) smoke particle size distribution characterized by a large effective radius of 0.3–0.4 μm and the absence of a particle coarse mode.


2018 ◽  
Vol 18 (16) ◽  
pp. 11847-11861 ◽  
Author(s):  
Moritz Haarig ◽  
Albert Ansmann ◽  
Holger Baars ◽  
Cristofer Jimenez ◽  
Igor Veselovskii ◽  
...  

Abstract. We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5–6.5 km height and in a stratospheric layer from 15–16 km height during a record-breaking smoke event on 22 August 2017. Three polarization/Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths (<3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22 % at 355 nm and 18 % at 532 nm and a comparably low value of 4 % at 1064 nm. The lidar ratios were 40–45 sr (355 nm), 65–80 sr (532 nm), and 80–95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius >500 nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350–400 nm. The effective particle radius was 0.32 µm. The tropospheric smoke particles were much smaller (effective radius of 0.17 µm). Mass concentrations were of the order of 5.5 µg m−3 (tropospheric layer) and 40 µg m−3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.


2004 ◽  
Vol 109 (D13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Detlef Müller ◽  
Ina Mattis ◽  
Albert Ansmann ◽  
Birgit Wehner ◽  
Dietrich Althausen ◽  
...  

2017 ◽  
Author(s):  
Igor Veselovskii ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
Didier Tanre ◽  
Arlindo da Silva ◽  
...  

Abstract. Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke/dust episode over West Africa on 24–27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500 m–4000 m range. The profiles of lidar measured backscattering, extinction coefficients and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near–surface dust and elevated smoke layers. The values of modeled and observed extinctions at both 355 nm and 532 nm are also rather close. Good coherence between measured and modeled extinction profiles provides an opportunity to test how well the model reproduces backscattering of dust particles at different wavelengths. The comparison shows good agreement of modeled and measured backscattering coefficients at 355 nm, meaning that the modeled dust lidar ratio of 65 sr in the near-surface layer is close to the observed value. At 532 nm however, the simulated lidar ratio is lower than measurements (about 40 sr and 50 sr respectively). The reason for this disagreement could be that the assumed imaginary part of the refractive index for dust (0.0025 at 532 nm) is too low, or that the particle size distribution in the model is too much weighted toward fine mode dust. The model predicts significant concentration of dust particles inside the smoke layer. This is supported by a high depolarization ratio of 15 % observed in the center of this layer. The backscattering Ångström exponent at 355/532 nm as well as both lidar ratios have a minimum in the center of the elevated layer, which can also be explained by the presence of dust.


2020 ◽  
Vol 237 ◽  
pp. 02036
Author(s):  
Moritz Haarig ◽  
Holger Baars ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Kevin Ohneiser ◽  
...  

Canadian wildfire smoke was detected in the troposphere and lower stratosphere over Europe in August and September 2017. Lidar measurements from various stations of the European Aerosol Research Lidar Network (EARLINET) observed the stratospheric smoke layer. Triple-wavelength (355, 532, and 1064 nm) lidar measurements of the depolarization and the lidar ratio are reported from Leipzig, Germany. The particle linear depolarization ratio of the wildfire smoke in the stratosphere had an exceptional strong wavelength dependence reaching from 0.22 at 355 nm, to 0.18 at 532 nm, and 0.04 at 1064 nm. The lidar ratio increased with wavelength from 40±16 sr at 355 nm, to 66±12 sr at 532 nm, and 92±27 sr at 1064 nm. The development of the stratospheric smoke plume over several months was studied by long-term lidar measurements in Cyprus. The stratospheric smoke layers increased in altitude up to 24 km height.


2018 ◽  
Vol 176 ◽  
pp. 05004
Author(s):  
Igor Veselovskii ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
Didier Tanre ◽  
Albert Ansmann ◽  
...  

Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR) effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.


Sign in / Sign up

Export Citation Format

Share Document