scholarly journals Assessing the vertical structure of Arctic aerosols using balloon-borne measurements

2021 ◽  
Vol 21 (3) ◽  
pp. 1737-1757
Author(s):  
Jessie M. Creamean ◽  
Gijs de Boer ◽  
Hagen Telg ◽  
Fan Mei ◽  
Darielle Dexheimer ◽  
...  

Abstract. The rapidly warming Arctic is sensitive to perturbations in the surface energy budget, which can be caused by clouds and aerosols. However, the interactions between clouds and aerosols are poorly quantified in the Arctic, in part due to (1) limited observations of vertical structure of aerosols relative to clouds and (2) ground-based observations often being inadequate for assessing aerosol impacts on cloud formation in the characteristically stratified Arctic atmosphere. Here, we present a novel evaluation of Arctic aerosol vertical distributions using almost 3 years' worth of tethered balloon system (TBS) measurements spanning multiple seasons. The TBS was deployed at the U.S. Department of Energy Atmospheric Radiation Measurement Program's facility at Oliktok Point, Alaska. Aerosols were examined in tandem with atmospheric stability and ground-based remote sensing of cloud macrophysical properties to specifically address the representativeness of near-surface aerosols to those at cloud base. Based on a statistical analysis of the TBS profiles, ground-based aerosol number concentrations were unequal to those at cloud base 86 % of the time. Intermittent aerosol layers were observed 63 % of the time due to poorly mixed below-cloud environments, mostly found in the spring, causing a decoupling of the surface from the cloud layer. A uniform distribution of aerosol below cloud was observed only 14 % of the time due to a well-mixed below-cloud environment, mostly during the fall. The equivalent potential temperature profiles of the below-cloud environment reflected the aerosol profile 89 % of the time, whereby a mixed or stratified below-cloud environment was observed during a uniform or layered aerosol profile, respectively. In general, a combination of aerosol sources, thermodynamic structure, and wet removal processes from clouds and precipitation likely played a key role in establishing observed aerosol vertical structures. Results such as these could be used to improve future parameterizations of aerosols and their impacts on Arctic cloud formation and radiative properties.

2020 ◽  
Author(s):  
Jessie M. Creamean ◽  
Gijs de Boer ◽  
Hagen Telg ◽  
Fan Mei ◽  
Darielle Dexheimer ◽  
...  

Abstract. The rapidly-warming Arctic is sensitive to perturbations in the surface energy budget, which can be caused by clouds and aerosols. However, the interactions between clouds and aerosols are poorly quantified in the Arctic, in part due to: (1) limited observations of vertical structure of aerosols relative to clouds and (2) ground-based observations often being inadequate for assessing aerosol impacts on cloud formation in the characteristically stratified Arctic atmosphere. Here, we present a novel evaluation of Arctic aerosol vertical distributions using almost 3 years' worth of tethered balloon system (TBS) measurements spanning multiple seasons. The TBS was deployed at the U.S. Department of Energy Atmospheric Radiation Measurement Program's facility at Oliktok Point, Alaska. Aerosols were examined in tandem with atmospheric stability and ground-based remote sensing of cloud macrophysical properties to specifically address the representativeness of near-surface aerosols to those at cloud base. Based on a statistical analysis of the TBS profiles, ground-based aerosol number concentrations were unequal to those at cloud base 86 % of the time. Intermittent aerosol layers were observed 63 % of the time due to poorly mixed below-cloud environments, mostly in the spring, causing a decoupling of the surface from the cloud layer. A uniform distribution of aerosol below cloud was observed only 14 % of the time due to a well-mixed below-cloud environment, mostly during the fall. The equivalent potential temperature profiles of the below-cloud environment reflected the aerosol profile 89 % of the time whereby a mixed or stratified below-cloud environment was observed during a uniform or layered aerosol profile, respectively. In general, a combination of aerosol sources, thermodynamic structure, and wet removal processes from clouds and precipitation likely played a key role in establishing observed aerosol vertical structure. Results such as these could be used to improve future parameterizations of aerosols and their impacts on Arctic cloud formation and radiative properties.


2021 ◽  
Author(s):  
Yvette Gramlich ◽  
Sophie Haslett ◽  
Karolina Siegel ◽  
Gabriel Freitas ◽  
Radovan Krejci ◽  
...  

<p>The number of cloud seeds, e.g. cloud condensation nuclei (CCN) and ice nucleation particles (INP), in the pristine Arctic shows a large range throughout the year, thereby influencing the radiative properties of Arctic clouds. However, little is known about the chemical properties of CCN and INP in this region. This study aims to investigate the chemical properties of aerosol particles and trace gases that are of importance for cloud formation in the Arctic environment, with focus on the organic fraction.</p><p>Over the course of one full year (fall 2019 until fall 2020), we deployed a filter-inlet for gases and aerosols coupled to a chemical ionization high-resolution time-of-flight mass spectrometer (FIGAERO-CIMS) using iodide as reagent ion at the Zeppelin Observatory in Svalbard (480 m a.s.l.), as part of the Ny-Ålesund Aerosol Cloud Experiment (NASCENT). The FIGAERO-CIMS is able to measure organic trace gases and aerosol particles semi-simultaneously. The instrument was connected to an inlet switching between a counterflow virtual impactor (CVI) inlet and a total air inlet. This setup allows to study the differences in chemical composition of organic aerosol particles and trace gases at molecular level that are involved in Arctic cloud formation compared to ambient non-activated aerosol.</p><p>We observed organic signal above background in both gas and particle phase all year round. A comparison between the gas phase mass spectra of cloud-free and cloudy conditions shows lower signal for some organics inside the cloud, indicating that some trace gases are scavenged by cloud hydrometeors whilst others are not. In this presentation we will discuss the chemical characteristics of the gases exhibiting different behavior during clear sky and cloudy conditions, and the implications for partitioning of organic compounds between the gas, aerosol particle and cloud hydrometeor (droplet/ice) phase.</p>


2015 ◽  
Vol 72 (1) ◽  
pp. 430-451 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Bruce A. Albrecht ◽  
Christopher W. Fairall

Abstract Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (−0.41 g kg−1) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling.


2010 ◽  
Vol 10 (8) ◽  
pp. 18807-18878 ◽  
Author(s):  
S. J. Doherty ◽  
S. G. Warren ◽  
T. C. Grenfell ◽  
A. D. Clarke ◽  
R. E. Brandt

Abstract. Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983–1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005–2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity to BC sources. Individual samples of falling snow were collected on Svalbard, documenting the springtime decline of BC from March through May. Absorption Ångstrom exponents are 1.5–1.7 in Norway, Svalbard, and Western Russia, 2.1–2.3 elsewhere in the Arctic, and 2.5 in Greenland. Correspondingly, the estimated contribution to absorption by non-BC constituents in these regions is ~25%, 40%, and 50%, respectively. It has been hypothesized that when the snow surface layer melts some of the BC is left at the top of the snowpack rather than being carried away in meltwater. This process was observed in a few locations and would cause a positive feedback on snowmelt. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air at Alert (Canada), Barrow (Alaska), and Ny-Ålesund (Svalbard). Correspondingly, the new BC concentrations for Arctic snow are somewhat lower than those reported by Clarke and Noone for 1983–1984, but because of methodological differences it is not clear that the differences are significant.


2020 ◽  
Author(s):  
Daniel Martinez ◽  
Yamina Silva ◽  
Rene Estevan ◽  
Jose Luis Flores ◽  
Luis Suarez ◽  
...  

<p>A set of instruments to measure several atmospheric physical, microphysical and radiative properties of the atmosphere and clouds is essential to understand the conditions of formation and development, and eventually, the effects of extreme meteorological events, like severe rainfall, hailstorms and frost events that occur with some regularity in the central Andes of Peru. With this purpose, the Geophysical Institute of Peru has installed a set of specialized sensors in the Huancayo observatory (12.04°S,75.32°W, 3313 m ASL)  including  sub-sets dedicated to the measurements of near-surface and low boundary layer turbulent flows (turbulence and gradients subset),  measurement of precipitation and its structure (precipitation subset)and the measurement of aerosols and their interaction with radiation in the atmosphere (radiation subset). Additionally, a proper open area is reserved for  upper air soundings.  The turbulence subset consists of a set of thermohygrometers (HMP60 probe of Campbell Scientific) placed in two towers, one of 1 m and another of 30 m high, two wind sentry sets (03002 of Campbell Scientific), five tensiometers (Decagon 5TM VWC) to measure soil temperatures and moistures and a soil heat flux plate (HFP01 of Campbell scientific). The radiation subset consists of three pyranometers (CMP10 of Kipp & Zonen), to measure short-wave solar irradiance components, for(global, diffuse and reflected) and a pyrheliometer (CHP1 of Kipp & Zonen) to measure direct solar irradiance. A small black sphere mounted on an articulated shading assembly in a two-axis automatic sun tracker (Kipp & Zonen 2AP) blocked direct solar irradiance and allows to measure diffuse solar irradiance. To measure long-wave terrestrial irradiance components, two pyrgeometers are used (CGR4 of Kipp & Zonen). All these radiative sensors are installed in a tower of 6 m high. The precipitation subset includes A Ka-band cloud profiler (MIRA-35c), a disdrometer (PARSIVEL2) and two rain gauges pluviometers. A UHF wind profiler (CLAIRE), and a VHF wind profiler (BLTR) complement the precipitation subset, as they can detect turbulent low-level wind turbulence, associated with precipitation events.  . The upper-air sounding system consists of two stations: Windsond, for  model S1H3) and Meteo-modem, for model M10 radiosondes. All these sensors have been used to study the surface-atmosphere interactions, including the behavior of surface boundary layer, the components of surface energy budget and the microphysics properties or rainfall during the occurrence of extreme meteorological events, and to validate numerical model simulations. To show practical applications of LAMAR instrumentation we present a detailed analysis of two events: a severe rainfall event occurred on 17 January 2018 and a frost event occurred on 08 July 2018.</p>


2020 ◽  
Vol 61 (82) ◽  
pp. 12-23
Author(s):  
Changwei Liu ◽  
Zhiqiu Gao ◽  
Qinghua Yang ◽  
Bo Han ◽  
Hong Wang ◽  
...  

AbstractThe surface energy budget over the Antarctic sea ice from 8 April 2016 through 26 November 2016 are presented. From April to October, Sensible heat flux (SH) and subsurface conductive heat flux (G) were the heat source of surface while latent heat flux (LE) and net radiation flux (Rn) were the heat sink of surface. Our results showed larger downward SH (due to the warmer air in our site) and upward LE (due to the drier air and higher wind speed in our site) compared with SHEBA data. However, the values of SH in N-ICE2015 campaign, which located at a zone with stronger winds and more advection of heat in the Arctic, were comparable to our results under clear skies. The values of aerodynamic roughness length (z0m) and scalar roughness length for temperature (z0h), being 1.9 × 10−3 m and 3.7 × 10−5 m, were suggested in this study. It is found that snow melting might increase z0m. Our results also indicate that the value of log(z0h/z0m) was related to the stability of stratification. In addition, several representative parameterization schemes for z0h have been tested and a couple of schemes were found to make a better performance.


2009 ◽  
Vol 9 (1) ◽  
pp. 595-634
Author(s):  
A. Lampert ◽  
A. Ehrlich ◽  
A. Dörnbrack ◽  
O. Jourdan ◽  
J.-F. Gayet ◽  
...  

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign, which was conducted in March and April 2007, an optically thin ice cloud was observed at around 3 km altitude south of Svalbard. The microphysical and radiative properties of this particular subvisible midlevel cloud were investigated with complementary remote sensing and in-situ instruments. Collocated airborne lidar remote-sensing and spectral solar radiation measurements were performed at a flight altitude of 2300 m below the cloud base. Under almost stationary atmospheric conditions, the same subvisible midlevel cloud was probed with various in-situ sensors roughly 30 min later. From individual ice crystal samples detected with the Cloud Particle Imager and the ensemble of particles measured with the Polar Nephelometer, we retrieved the single-scattering albedo, the scattering phase function as well as the volume extinction coefficient and the effective diameter of the crystal population. Furthermore, a lidar ratio of 21 (±6) sr was deduced by two independent methods. These parameters in conjunction with the cloud optical thickness obtained from the lidar measurements were used to compute spectral and broadband radiances and irradiances with a radiative transfer code. The simulated results agreed with the observed spectral downwelling radiance within the range given by the measurement uncertainty. Furthermore, the broadband radiative simulations estimated a net (solar plus thermal infrared) radiative forcing of the subvisible midlevel ice cloud of −0.4 W m−2 (−3.2 W m−2 in the solar and +2.8 W m−2 in the thermal infrared wavelength range).


2018 ◽  
Vol 31 (19) ◽  
pp. 8101-8119 ◽  
Author(s):  
John Mioduszewski ◽  
Stephen Vavrus ◽  
Muyin Wang

Projections of Arctic sea ice through the end of the twenty-first century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic basin because of changes in atmospheric stability, surface roughness, and/or baroclinicity. Here we identify patterns of wind changes in all seasons across the Arctic and their likely causal mechanisms, particularly those associated with sea ice loss. Output from the Community Earth System Model Large Ensemble Project (CESM-LE) was analyzed for the recent past (primarily 1971–2000) and future (2071–2100). Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 95th percentile change even more, increasing in frequency by up to 100%. The strengthened winds are closely linked to decreasing surface roughness and lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (exceeding 20°C warmer in the central Arctic in autumn and winter), as well as local changes in the storm track. The implications of stronger future winds include increased coastal and navigational hazards. Our findings suggest that increasing winds, along with reduction of sea ice, rising sea level, and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.


2016 ◽  
Author(s):  
G. Young ◽  
H. M. Jones ◽  
T. W. Choularton ◽  
J. Crosier ◽  
K. N. Bower ◽  
...  

Abstract. In situ airborne observations of cloud microphysics, aerosol properties and thermodynamic structure over the transition from sea ice to ocean are presented from the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign. A case study from 23 March 2013 provides a unique view of the cloud microphysical changes over this transition under cold air outbreak conditions. Cloud base and depth both increased over this transition, and mean droplet number concentrations also increased from approximately 80 cm−3 over the sea ice to 90 cm−3 over the ocean. The ice properties of the cloud remained approximately constant. Observed ice crystal concentrations averaged approximately 0.5–1.5 L−1, suggesting only primary ice nucleation was active; however, there was evidence of crystal fragmentation at cloud base over the ocean. The liquid-water content increased almost four-fold over the transition and this, in conjunction with the deeper cloud layer, allowed rimed snowflakes to develop which precipitated out of cloud base. Little variation in aerosol particle number concentrations was observed between the different surface conditions; however, some variability with altitude was observed, with notably greater concentrations measured at higher altitudes (> 800 m) over the sea ice. Near-surface boundary layer temperatures increased by 13 °C from sea ice to ocean, with corresponding increases in surface heat fluxes and turbulent kinetic energy. These significant thermodynamic changes were concluded to be the primary driver of the microphysical evolution of the cloud. This study represents the first investigation, using in situ airborne observations, of cloud microphysical changes with changing sea ice cover and addresses the question of how the microphysics of Arctic stratiform clouds may change as the region warms and sea ice extent reduces.


2009 ◽  
Vol 66 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Ken Takahashi

Abstract The radiative constraints on the partitioning of the surface energy budget and, hence, on the strength of the hydrological cycle are analyzed in an idealized one-dimensional radiative–convective equilibrium model formulated in terms of the energy budgets at the top of the atmosphere, the subcloud layer, and the free atmosphere, which enables it to predict both surface relative humidity and the air–sea temperature difference. Using semigray radiative transfer, a semianalytical solution was obtained that explicitly shows how the surface latent heat flux (LHF) is related to the radiative properties of the atmosphere. This solution was also used in conjunction with a full radiative transfer code and was found to provide reasonably realistic quantitative estimates. In the model the LHF is fundamentally constrained by the net longwave flux divergence above the level of condensation by lifting (LCL) and by the atmospheric absorption of shortwave radiation, with only a weak indirect control by near-surface moisture. The latter implies that the Clausius–Clapeyron relation does not directly constrain the strength of the hydrological cycle. Under radiative perturbations, the changes in LHF are determined by the changes in the net longwave fluxes at the LCL, associated mainly with the changes in the longwave transmissivity, and by the changes in shortwave absorption by the atmosphere (e.g., by increased water vapor). Using a full radiative transfer model with interactive water vapor feedback with the semianalytical solution indicates a rate of change in LHF with greenhouse forcing of around 2 W m−2 K−1 of surface warming, which corresponds to the Planck feedback (∼3.2 W m−2 K−1) multiplied by a coefficient of order one that, to first approximation, depends only on the relative magnitudes of the net longwave radiation fluxes at the LCL and the top of the atmosphere (i.e., on the shape of the vertical profile of the net longwave flux).


Sign in / Sign up

Export Citation Format

Share Document