scholarly journals Thermodynamic and Radiative Structure of Stratocumulus-Topped Boundary Layers*

2015 ◽  
Vol 72 (1) ◽  
pp. 430-451 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Bruce A. Albrecht ◽  
Christopher W. Fairall

Abstract Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (−0.41 g kg−1) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling.

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Refet A. Yalçın ◽  
Hakan Ertürk

Inverse design of thickness sensitive spectrally selective pigmented coatings that are used in absorbers of solar thermal collectors is considered. The objective is to maximize collection efficiency by achieving high absorptance at solar wavelengths and low emittance at the infrared (IR) wavelengths to minimize heat loss. Radiative properties of these coatings depend on coating thickness, pigment size, concentration, and the optical properties of binder and pigment materials, and a unified radiative transfer model of the pigmented coatings is developed in order to understand the effect of these parameters on the properties. The unified model (UM) relies on Lorenz–Mie theory (LMT) for independent scattering regime in conjunction with extended Hartel theory (EHT) to incorporate the multiple scattering effects, T-matrix method (TMM) for dependent scattering, and effective medium theory (EMT) for very small particles. A simplified version of the UM (SUM) ignoring dependent scattering is also developed for improving computational efficiency. Through the solution of the radiative transfer equation by the four flux method (FFM), spectral properties are predicted. The developed model is used in conjunction with inverse design for estimating design variables yielding the desired spectral emittance of the ideal coating. The nonlinear inverse design problem is solved by optimization by using simulated annealing (SA) method that is capable of finding global minimum regardless of initial guess.


1993 ◽  
Vol 17 ◽  
pp. 300-306 ◽  
Author(s):  
C.J. Van Der Veen ◽  
K. C. Jezek

The radiative-transfer model developed by Zwally (1977) is modified and coupled to a one-dimensional time-dependent temperature model, to calculate the seasonal variation in brightness temperature. By comparing this with observed records, the radiative properties of firn can be determined. By retaining scattering as a source term in the radiative transfer function, agreement between model-derived scattering and absorption coefficients and those calculated from the Mie/Rayleigh scattering theory can be obtained. The horizontal brightness temperature is not linked to the vertical one through a constant power reflection coefficient.


2005 ◽  
Vol 44 (1) ◽  
pp. 72-85 ◽  
Author(s):  
M. N. Deeter ◽  
J. Vivekanandan

Abstract Measurements from passive microwave satellite instruments such as the Advanced Microwave Sounding Unit B (AMSU-B) are sensitive to both liquid and ice cloud particles. Radiative transfer modeling is exploited to simulate the response of the AMSU-B instrument to mixed-phase clouds over land. The plane-parallel radiative transfer model employed for the study accounts for scattering and absorption from cloud ice as well as absorption and emission from trace gases and cloud liquid. The radiative effects of mixed-phase clouds on AMSU-B window channels (i.e., 89 and 150 GHz) and water vapor line channels (i.e., 183 ± 1, 3, and 7 GHz) are studied. Sensitivities to noncloud parameters, including surface temperature, surface emissivity, and atmospheric temperature and water vapor profiles, are also quantified. Modeling results indicate that both cloud phases generally have significant radiative effects and that the 150- and 183 ± 7-GHz channels are typically the most sensitive channels to integrated cloud properties (i.e., liquid water path and ice water path). However, results also indicate that AMSU-B measurements alone are probably insufficient for retrieving all mixed-phase cloud properties of interest. These results are supported by comparisons of AMSU-B observations of a mixed-phase cloud over the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site with corresponding calculated clear-sky values.


1993 ◽  
Vol 17 ◽  
pp. 201-206 ◽  
Author(s):  
Claude Kergomard ◽  
Bernard Bonnel ◽  
Yves Fouquart

With the development of coupled atmosphere–ocean models for the polar seas, there will be a great need of surface radiation budget data over partially ice-covered sea surfaces of the marginal ice zones. This paper presents an attempt to retrieve the surface radiation budget components over the Fram Strait area from operational satellite data, i.e. AVHRR visible and infrared radiances and SSM/I passive microwave brightness temperatures. The cloud optical thickness, which is the main modulator for the incoming solar flux, is retrieved from AVHRR visible radiances through a radiative transfer model, assuming surface conditions deduced from the SSM/I ice concentrations. The cloud base emissivity, required for the downwelling infrared flux computation, is linked to the optical thickness through the liquid water path. The results presented show a good agreement with field measurements and little sensitivity to the cloud and aerosol properties extracted from the literature rather than from the satellite data. Infrared fluxes retrievals would however require a better knowledge of the atmosphere temperature profile and cloud base altitude.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1187
Author(s):  
Tianyu Zhang ◽  
Jiming Sun ◽  
Yi Yang

The effects of radiation heating and cooling on cumulus cloud development have been the focus of considerable attention for many years. However, it is still not clear how radiation impacts cloud droplet growth. Since cloud inhomogeneity has a great influence on radiation transmission, we coupled the 3D atmospheric radiative transfer model using the spherical harmonic discrete ordinate method with WRF-LES, which can improve the simulation accuracy of the inhomogeneous effect of clouds on radiation compared with that of the 1D radiation method. The shortwave and longwave radiation fluxes for upward and downward directions were simulated with different solar zenith angles. The comparison of 1D and 3D radiative solvers for deep convective cloud cases shows that the 3D radiative solver provides an accurate structure of solar and thermal radiation characteristics and the spatial distribution field. The solar radiation heating is likely to increase perpendicular to the solar incidence direction. For longwave radiation, the cooling effect on the cloud top and the heating effect on the cloud base are both more intense in the 3D radiation model. This study focuses on 3D cloud-radiative interactions in an inhomogeneous cloud field in a large eddy simulation, and the results suggest that compared with the widely used 1D radiative solver in WRF, the 3D radiation model can provide a precise description of the radiation field in an inhomogeneous atmosphere.


2008 ◽  
Vol 65 (6) ◽  
pp. 1979-1990 ◽  
Author(s):  
Paquita Zuidema ◽  
Huiwen Xue ◽  
Graham Feingold

Abstract The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three-dimensional radiative transfer (3DRT) effects alter the fluxes by 10%–20% from values calculated using the independent column approximation for these simulations. The first (Twomey) aerosol indirect effect is dominant but the decreased cloud fraction reduces the magnitude of the shortwave cloud forcing substantially. The 3DRT effects slightly decrease the sensitivity of the cloud albedo to changes in droplet size under an overhead sun for the two ranges of cloud liquid water paths examined, but not strongly so. A popular two-stream radiative transfer approximation to the cloud susceptibility overestimates the more directly calculated values for the low liquid-water-path clouds within pristine aerosol conditions by a factor of 2 despite performing well otherwise, suggesting caution in its application to the cloud albedos within broken cloud fields. An evaluation of the influence of cloud susceptibility and cloud fraction changes to a “domain” area-weighted cloud susceptibility found that the domain cloud albedo is more likely to increase under aerosol loading at intermediate aerosol concentrations than under the most pristine conditions, contrary to traditional expectations. The second simulation (cumulus penetrating into stratus) is characterized by higher cloud fractions and more precipitation. This case has two regimes: a clean, precipitating regime where cloud fraction increases with increasing aerosol, and a more polluted regime where cloud fraction decreases with increasing aerosol. For this case the domain-mean cloud albedo increases steadily with aerosol loading under clean conditions, but increases only slightly after the cloud coverage decreases. Three-dimensional radiative transfer effects are mostly negligible for this case. Both sets of simulations suggest that aerosol-induced cloud fraction changes must be considered in tandem with the Twomey effect for clouds of small dimensions when assessing the net radiative impact, because both effects are drop size dependent and radiatively significant.


1997 ◽  
Vol 119 (4) ◽  
pp. 746-753 ◽  
Author(s):  
S. Dembele ◽  
A. Delmas ◽  
J. F. Sacadura

A radiative transfer model describing the interactions between hazardous fire thermal radiation and water sprays is presented. Both the liquid (water droplets) and gaseous (mainly water vapor and carbon dioxide) phases of the spray are considered in the present work. Radiative properties of the polydisperse water droplets are derived from Mie theory. The gaseous phase behavior is handled by the correlated-k distribution method, where the k-distribution function is evaluated for Malkmus narrow-band statistical model. The radiative transfer equation, in its integral form, is solved by a discrete ordinates method. After a general description of the radiative model developed and the experimental task to validate it, some results are discussed on its accuracy and CPU time. A deeper analysis is also carried out to point out the influence of the main parameters involved in the problem.


2010 ◽  
Vol 49 (6) ◽  
pp. 1129-1148 ◽  
Author(s):  
Mei Han ◽  
Scott A. Braun ◽  
William S. Olson ◽  
P. Ola G. Persson ◽  
Jian-Wen Bao

Abstract This paper uses observations from Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and microwave imager (TMI) to evaluate the cloud microphysical schemes in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5; version 3.7.4) for a wintertime frontal precipitation system over the eastern Pacific Ocean. By incorporating a forward radiative transfer model, the radar reflectivity and brightness temperatures are simulated and compared with the observations at PR and TMI frequencies. The main purpose of this study is to identify key differences among the five schemes [including Simple ice, Reisner1, Reisner2, Schultz, and Goddard Space Flight Center (GSFC) microphysics scheme] in the MM5 that may lead to significant departures of simulated precipitation properties from both active (PR) and passive (TMI) microwave observations. Radiative properties, including radar reflectivity, attenuation, and scattering in precipitation liquid and ice layers are investigated. In the rain layer, most schemes are capable of reproducing the observed radiative properties to a reasonable degree; the Reisner2 simulation, however, produces weaker reflectivity and stronger attenuation than the observations, which is possibly attributable to the larger intercept parameter (N0r) applied in this run. In the precipitation ice layer, strong evidence regarding the differences in the microphysical and radiative properties between a narrow cold-frontal rainband (NCFR) and a wide cold-frontal rainband (WCFR) within this frontal precipitation system is found. The performances of these schemes vary significantly on simulating the microphysical and radiative properties of the frontal rainband. The GSFC scheme shows the least bias, while the Reisner1 scheme has the largest bias in the reflectivity comparison. It appears more challenging for the model to replicate the scattering signatures obtained by the passive sensor (TMI). Despite the common problem of excessive scattering in the WCFR (stratiform precipitation) region in every simulation, the magnitude of the scattering maximum seems better represented in the Reisner2 scheme. The different types of precipitation ice, snow, and graupel are found to behave differently in the relationship of scattering versus reflectivity. The determinative role of the precipitation ice particle size distribution (intercept parameters) is extensively discussed through sensitivity tests and a single-layer radiative transfer model.


1993 ◽  
Vol 17 ◽  
pp. 300-306 ◽  
Author(s):  
C.J. Van Der Veen ◽  
K. C. Jezek

The radiative-transfer model developed by Zwally (1977) is modified and coupled to a one-dimensional time-dependent temperature model, to calculate the seasonal variation in brightness temperature. By comparing this with observed records, the radiative properties of firn can be determined. By retaining scattering as a source term in the radiative transfer function, agreement between model-derived scattering and absorption coefficients and those calculated from the Mie/Rayleigh scattering theory can be obtained. The horizontal brightness temperature is not linked to the vertical one through a constant power reflection coefficient.


2009 ◽  
Vol 48 (8) ◽  
pp. 1591-1612 ◽  
Author(s):  
Seung-Hee Ham ◽  
Byung-Ju Sohn ◽  
Ping Yang ◽  
Bryan A. Baum

Abstract Observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS), the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and CloudSat are synergistically used to evaluate the accuracy of theoretical simulations of the radiances at the top of the atmosphere (TOA). Specifically, TOA radiances of 15 MODIS bands are simulated for overcast, optically thick, and single-phase clouds only over the ocean from 60°N to 60°S, corresponding to about 12% of all the MODIS cloud observations. Plane parallel atmosphere is assumed in the simulation by restricting viewing/solar zenith angle to be less than 40°. Input data for the radiative transfer model (RTM) are obtained from the operational MODIS-retrieved cloud optical thickness, effective radius, and cloud-top pressure (converted to height) collocated with the AIRS-retrieved temperature and humidity profiles. In the RTM, ice cloud bulk scattering properties, based on theoretical scattering computations and in situ microphysical data, are used for the radiative transfer simulations. The results show that radiances for shortwave bands between 0.466 and 0.857 μm appear to be very accurate with errors on the order of 5%, implying that MODIS cloud parameters provide sufficient information for the radiance simulations. However, simulated radiances for the 1.24-, 1.63-, and 3.78-μm bands do not agree as well with the observed radiances as a result of the use of a single effective radius for a cloud layer that may be vertically inhomogeneous in reality. Furthermore, simulated radiances for the water vapor absorption bands located near 0.93 and 1.38 μm show positive biases, whereas the window bands from 8.5 to 12 μm show negative biases compared to observations, likely due to the less accurate estimate of cloud-top and cloud-base heights. It is further shown that the accuracies of the simulations for water vapor and window bands can be substantially improved by accounting for the vertical cloud distribution provided by the CALIPSO and CloudSat measurements.


Sign in / Sign up

Export Citation Format

Share Document