scholarly journals Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area

2021 ◽  
Vol 21 (11) ◽  
pp. 8863-8882
Author(s):  
Zhaobin Sun ◽  
Xiujuan Zhao ◽  
Ziming Li ◽  
Guiqian Tang ◽  
Shiguang Miao

Abstract. Different types of pollution boundary layer structures form via the coupling of different synoptic systems and local mesoscale circulation in the boundary layer; this coupling contributes toward the formation and continuation of haze pollution. In this study, we objectively classify the 32 heavy haze pollution events using integrated meteorological and environmental data and ERA-Interim analysis data based on the rotated empirical orthogonal function method. The thermodynamic and dynamic structures of the boundary layer for different pollution weather types are synthesized, and the corresponding three-dimensional boundary layer conceptual models for haze pollution are constructed. The results show that four weather types mainly influence haze pollution events in the Beijing area: (a) type 1 – southerly transport, (b) type 2 – easterly convergence, (c) type 3 – sinking compression, and (d) type 4 – local accumulation. The explained variances in the four pollution weather types are 43.69 % (type 1), 33.68 % (type 2), 16.51 % (type 3), and 3.92 % (type 4). In persistent haze pollution events, type 1 and type 2 surpass 80 % on the first and second days, while the other types are present alternately in later stages. The atmospheric structures of type 1, type 2, and type 3 have typical baroclinic characteristics at mid–high latitudes, indicating that the accumulation and transport of pollutants in the boundary layer are affected by coupled structures in synoptic-scale systems and local circulation. The atmospheric structure of type 4 has typical barotropic characteristics, indicating that the accumulation and transport of pollutants is primarily affected by local circulation. In type 1, southerly winds with a specific thickness and intensity prevail in the boundary layer, which is favorable for the accumulation of pollutants in plain areas along the Yan and Taihang Mountains, whereas haze pollution levels in other areas are relatively low. Due to the interaction between weak easterly winds and the western mountains, pollutants accumulate mainly in the plain areas along the Taihang Mountains in type 2. The atmospheric vertical structure is not conducive to upward pollutant diffusion. In type 3, the heights of the inversion and boundary layers are the lowest due to a weak sinking motion while relative humidity is the highest among the four types. The atmosphere has a small capacity for pollutant dispersion and is favorable to particulate matter hygroscopic growth; as a result, type 3 has the highest PM2.5 concentration. In type 4, the boundary layer is the highest among the four types, the relative humidity is the lowest, and the PM2.5 concentration is relatively lower under the influence of local mountain–plain winds. Different weather types will shape significantly different structures of the pollution boundary layer. The findings of this study allow us to understand the inherent difference among heavy pollution boundary layers; in addition, they reveal the formation mechanism of haze pollution from an integrated synoptic-scale and boundary layer structure perspective. We also provide scientific support for the scientific reduction of emissions and air quality prediction in the Beijing–Tianjin–Hebei region of China.

2020 ◽  
Author(s):  
Zhaobin Sun ◽  
Xiujuan Zhao ◽  
Ziming Li ◽  
Guiqian Tang ◽  
Shiguang Miao

Abstract. Different types of pollution boundary layer structures form via the coupling of different synoptic systems and local mesoscale circulation in the boundary layer; this coupling contributes toward the formation and continuation of haze pollution. In this study, we objectively classify the 32 heavy haze pollution events using integrated meteorological and environmental data and ERA-Interim analysis data based on the rotated empirical orthogonal function method. The thermodynamic and dynamic structures of the boundary layer for different pollution weather types are synthesized, and the corresponding three-dimensional boundary layer conceptual models for haze pollution are constructed. The results show that four weather types mainly influence haze pollution events in the Beijing area: (a) type1: southerly transport, (b) type2: easterly convergence, (c) type3: sinking compression, and (d) type4: local accumulation. The explained variance in the four pollution weather types are 43.69 % (type1), 33.68 % (type2), 16.51 % (type3), and 3.92 % (type4). In persistent haze pollution events, type1 and type2 surpass 80 % on the first and second days, while the other types are present alternately in later stages. The atmospheric structures of type1, type2, and type3 have typical baroclinic characteristics at mid-high latitudes, indicating that the accumulation and transport of pollutants in the boundary layer is affected by coupled structures in synoptic-scale systems and local circulation. The atmospheric structure of type4 has typical barotropic characteristics, indicating that the accumulation and transport of pollutants is primarily affected by local circulation. In type1, southerly winds with a specific thickness and intensity prevail in the boundary layer, which is favorable for the accumulation of pollutants in plain areas along the Yan and Taihang Mountains, whereas haze pollution levels in other areas are relatively low. Due to the interaction between weak easterly winds and the western mountains, pollutants accumulate mainly in the plain areas along the Taihang Mountains in type2. The atmospheric vertical structure is not conducive to upward pollutant diffusion. In type3, the heights of the inversion and boundary layers are the lowest due to a weak sinking motion while relative humidity is the highest among the four types. The atmosphere has a small capacity for pollutant dispersion and is favorable to particulate matter hygroscopic growth; as a result, the type3 has highest PM2.5 concentration. In type4, the boundary layer is the highest among the four types, the relative humidity is the lowest, and the PM2.5 concentration is relatively lower under the influence of local mountain–plain winds. The findings of this study allow us to understand the inherent difference among heavy pollution boundary layers; in addition, they reveal the formation mechanism of haze pollution from an integrated synoptic scale and boundary layer structure perspective. We also provide scientific support for the scientific reduction of emissions and air quality prediction in the Beijing–Tianjin–Hebei region of China.


2012 ◽  
Vol 51 (4) ◽  
pp. 813-825 ◽  
Author(s):  
M. Shravan Kumar ◽  
V. K. Anandan ◽  
T. Narayana Rao ◽  
P. Narasimha Reddy

AbstractTwo years of Doppler sodar measurements are used to study the time–height structure of the nocturnal boundary layer (NBL), its seasonal variation, and the characteristics of different types of NBL. A total of 220 clear-sky nights during which the inversion layer is clearly visible on a sodar echogram are examined. The NBL depth estimated with sodar data using a wind maxima criterion matches reasonably well with radiosonde-based NBL depth estimates. The NBL exhibits clear seasonal variation with greater depths during the monsoon season. Shallow NBLs are generally observed in winter. The evolution of NBL height shows two distinctly different patterns (called type 1 and type 2), particularly in the second half of the night. Type 1 NBL depth is nearly constant and the wind speed in this type is generally weak and steady throughout the night, while type 2 is characterized by moderate to strong winds with considerable variations in NBL height. The local circulation generated by the complex topography is clearly seen in type 1 throughout the night, whereas it is seen only in the first half of the night in type 2. Type 1 NBLs seem to be more prevalent over Gadanki, India, with nearly 61% of total nights showing type 1 characteristics. Furthermore, type 1 NBL shows large seasonal variability with the majority of type 1 cases in winter. The type 2 cases are mostly observed in monsoon (~60%) followed by summer (39%). The surface meteorological parameters during type 1 and type 2 cases are examined. Differences between type 1 and type 2 NBL patterns are discussed in relation to the surface forcing.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Lili Wang ◽  
Nan Zhang ◽  
Zirui Liu ◽  
Yang Sun ◽  
Dongsheng Ji ◽  
...  

The air-pollution episodes in China in January 2013 were the most hazardous in the Beijing-Tianjin-Hebei (BTH) region. PM2.5, AOD, and long-term visibility data, along with various climate and meteorological factors and the boundary-layer structure, were used to investigate the cause of the heavy-haze pollution events in January 2013. The result suggests that unfavorable diffusion conditions (weak surface winds and high humidity) and high primary-pollutant emissions have induced heavy-haze pollution in the BTH region over the past two decades. A sudden stratospheric warming (SSW), weak East Asian winter monsoon, a weak Siberian High, weak meridional circulation, southerly wind anomalies in the lower troposphere, and abnormally weak surface winds and high humidity were responsible for the severe haze pollution events, rather than an abrupt increase in emissions. Heavy/severe haze pollution is associated with orographic wind convergence zones along the Taihang and Yanshan Mountains, slight winds (1.7∼2.1 m/s), and high humidity (70%∼90%), which limits the diffusion of pollutants and facilitates the hygroscopic growth of aerosols. Recirculation and regional transport, along with the poorest diffusion conditions and favorable conditions for hygroscopic growth of aerosols and secondary transformation under the high emission, led to explosive growth and the record high hourly average concentration of PM2.5in Beijing.


Author(s):  
A.M. Satarkulova

The assessment and dynamic control over students’ status is a very important task. It allows timely detection of prenosological status prior to pathology and health maintenance in students. The objective of the paper is to assess the adaptive abilities of the body, to analyze changes in heart rate variability indicators in students with various types of autonomic regulation, to identify prenosological status and precursory pathological symptoms. Materials and Methods. The study enrolled 302 students from India, aged 21.54±1.43. Programming complex «Psychophysiologist» was used to register the main HRV parameters within 5 minutes. Health status was evaluated according to the index of functional changes and the scale of functional states. Results. N.I. Shlyk (2009) distinguished two groups of students with different types of autonomic regulation: type 1 (53 %) with moderate and type 2 (5 %) with marked characteristics of central regulation profile, type 3 (35 %) with moderate and type 4 (7 %) with marked characteristics of autonomous regulation profile. Main parameters of HRV and adaptation potential were defined for each student.All the parameters characterized functional and health status. Conclusions. It was shown that 82 % of trial subjects (type 1), 53 % (type 2), 94 % (type 3) and 95 % (type 4) demonstrated satisfactory adaptation and their physiological processes were at an optimal level. 18 % of students (type 1) demonstrated reduced adaptive abilities of the body. Moreover, they were under moderate stress. 47 % of subjects (type 2) were also under a significant stress, which was proven by excessively high SI, low SDNN and TP, and an increased index of functional changes. 5 % of students (type 4) revealed dysfunctional characteristics in the heart rhythm, peculiar to pathology. Keywords: foreign students, heart rate variability, types of autonomic regulation, adaptation potential, functional status. Оценка состояния студентов и динамический контроль за ним является важной задачей, поскольку позволяет своевременно выявлять у студентов донозологические состояния, предшествующие патологии, и способствовать сохранению здоровья. Цель. Оценка адаптивных возможностей организма, анализ изменений показателей вариабельности сердечного ритма у студентов с различными типами вегетативной регуляции, выявление донозологических состояний и ранних признаков патологии. Материалы и методы. В исследовании участвовало 302 студента в возрасте 21,54+1,43 года из Индии. Регистрировались основные параметры ВСР в течение 5 мин с использованием программно-аппаратного комплекса «Психофизиолог». Состояние и уровень здоровья оценивались по индексу функциональных изменений и шкале функциональных состояний. Результаты. По способу, предложенному Н.И. Шлык, выделены группы студентов с различными типами вегетативной регуляции: I (53 %) и II типы (5 %) – с умеренным и выраженным преобладанием центрального контура регуляции соответственно, III (35 %) и IV типы (7 %) – с умеренным и выраженным преобладанием автономного контура регуляции соответственно. У каждого из студентов определены основные параметры ВСР и адаптационного потенциала, характеризующие функциональное состояние и уровень здоровья. Выводы. Показано, что для 82 % обследуемых с I типом, 53 % со II типом, 94 % c III типом и 95 % с IV типом регуляции характерно состояние удовлетворительной адаптации, физиологические процессы сохраняются на оптимальном уровне. В группе студентов I типа у 18 % студентов адаптивные возможности организма снижены, выявлено состояние умеренного напряжения. У 47 % обследуемых II типа также зафиксировано состояние резко выраженного напряжения, индикатором которого является чрезмерно высокое значение SI, низкие величины SDNN и ТP, повышенное значение индекса функциональных изменений. В группе студентов с IV типом у 5 % учащихсяв регуляции ритма сердца выявлены дисфункциональные признаки, характерные для патологии. Ключевые слова: иностранные студенты, вариабельность сердечного ритма, типы вегетативной регуляции, адаптационный потенциал, функциональное состояние.


1954 ◽  
Vol 32 (1) ◽  
pp. 119-125
Author(s):  
W. Wood ◽  
Eina M. Clark ◽  
F. T. Shimada ◽  
A. J. Rhodes

Studies on the basic immunology of poliomyelitis in Canadian Eskimos have been continued. Some 87 sera collected from Eskimos at Pangnirtung, Baffin Island, have been examined for the presence of Type 1 and Type 3 poliomyelitis antibody by quantitative tests in tissue cultures. The same sera were previously examined for Type 2 antibody by quantitative tests in mice. The results of the three determinations are now presented together for comparison. These sera came from Eskimos aged 2 to 72 years of age. None of the Eskimos showed any evidence of paralysis. Examination of the medical records did not suggest that any paralytic disease had been present in this part of Baffin Island. Very few of the sera showed the presence of poliomyelitis antibody; thus, Type 1 antibody was demonstrated in the sera of 8%, Type 2 antibody in the sera of 9%, and Type 3 antibody in the sera of 14%. No significant number of Eskimos below the age of 45 years had acquired poliomyelitis antibody. The antibody titers mostly ranged between 10−1.0 and 10−2.0, and were significantly lower than the titers customarily found in recently paralyzed cases. These findings suggest that poliomyelitis infection occurred in Pangnirtung Eskimos many years before the date on which the samples were taken (1951). These results point to the worldwide prevalence of the three types of poliomyelitis virus.


2021 ◽  
Vol 47 (02) ◽  
pp. 192-200
Author(s):  
James S. O'Donnell

AbstractThe biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.


2021 ◽  
Author(s):  
Hui Xu ◽  
Lei Chen ◽  
Wansuo Duan

AbstractThe optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial error makes a moderate El Niño event to be predicted as an extremely strong event.


Author(s):  
Mi Hyeon Seong ◽  
Eunyoung Shin ◽  
Sohyune Sok

The purpose of this study is to identify the types of perception of successful aging in middle-aged men and to analyze and describe the characteristics of each type of successful aging perception of middle-aged men in South Korea. This study uses an exploratory study design, applying the Q methodology, which is a subjective research method. The participants were 25 middle-aged men (40 to 60 years old) living in C, Y, and B cities, which were P-samples that were judged to best reveal the successful aging of middle-aged men. In this study, principal component analysis of the PQ method program was used. The five perception types of successful aging among middle-aged men are Type 1 for the “leisure type”, Type 2 for the “mature type”, Type 3 for the “health-oriented type”, Type 4 for the “patriarchal type”, and Type 5 for the “family-centered type”. The mature type had the highest variance among the five types, and the leisure type was the type that showed the second-highest variance. In nursing practice, nurses need to pay attention to the successful aging perceptions of middle-aged Korean men for their successful aging in the future.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2645
Author(s):  
Omer Cohen ◽  
Dieter D. Bosshardt ◽  
Evegeny Weinberg ◽  
Gil Slutzkey ◽  
Ofer Moses

Stress concentrated at an implant’s neck may affect bone-to-implant contact (BIC). The objective of this study was to evaluate four different implant neck designs using two different drilling protocols on the BIC. Methods: Ninety-six implants were inserted in 12 minipigs calvarium. Implants neck designs evaluated were: type 1–6 coronal flutes (CFs), 8 shallow microthreads (SMs); type 2–6 CFs,4 deep microthreads (DMs); type 3–4 DMs; type 4–2 CFs, 8 SMs. Two groups of forty-eight implants were inserted with a final drill diameter of 2.8 mm (DP1) or 3.2 mm (DP2). Animals were sacrificed after 1 and 3 months, total-BIC (t-BIC) and coronal-BIC (c-BIC) were evaluated by nondecalcified histomorphometry analysis. Results: At 1 month, t-BIC ranged from 85–91% without significant differences between implant types or drilling protocol. Flutes on the coronal aspect impaired the BIC at 3 m. c-BIC of implant types with 6 CFs was similar and significantly lower than that of implant types 3 and 4. c-BIC of implant type 4 with SMs was highest of all implant types after both healing periods. Conclusions: BIC was not affected by the drilling protocol. CFs significantly impaired the -BIC. Multiple SMs were associated with greater c-BIC.


Sign in / Sign up

Export Citation Format

Share Document