scholarly journals Secondary maxima in ozone profiles

2004 ◽  
Vol 4 (4) ◽  
pp. 1085-1096 ◽  
Author(s):  
R. Lemoine

Abstract. Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

2004 ◽  
Vol 4 (2) ◽  
pp. 1791-1816
Author(s):  
R. Lemoine

Abstract. Ozone profiles from balloon soundings as well as SAGE II ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is related to ozone trends in the total ozone column and in the lower stratosphere ozone concentration at Uccle and can be used as a measure of the influence of atmospheric circulation on the ozone distribution at mid-latitudes.


2007 ◽  
Vol 64 (6) ◽  
pp. 1922-1940 ◽  
Author(s):  
Matthew H. Hitchman ◽  
Amihan S. Huesmann

Differential advection in Rossby waves can lead to potential vorticity (PV; P) contours on isentropic surfaces folding over in latitude (Py < 0) in a process called Rossby wave breaking (RWB). Exploring the properties of RWB may shed light on underlying dynamics and enable quantification of irreversible transport. A seasonal climatology of Py and RWB statistics is presented for the 320–850-K layer using NCEP reanalysis data during 1979–2005 and for the 320–2000-K layer using the Met Office (UKMO) data during 1991–2003. A primary goal is to depict the spatial extent and seasonality of RWB maxima. This analysis shows seven distinct RWB regimes: poleward and equatorward of the subtropical westerly jets, poleward and equatorward of the stratospheric polar night jets, flanking the equator in the stratosphere and mesosphere, equatorward of subtropical monsoon anticyclones, and the summertime polar stratosphere. A striking PV gradient maximum exists at the equator throughout the layer 360–2000 K, flanked by subtropical RWB maxima, integral components of the Lagrangian cross-equatorial flow. Strong RWB occurs in the polar night vortex where β is small. Over the summer pole, strong poleward RWB associated with synoptic waves decays into small amplitude motions in the upper stratosphere, where heating gradients cause Py < 0. The seven spatial regimes are linked to three different dynamical causes of reversals: wave breaking associated with westerly jets, a combined barotropic/inertial instability in cross-equatorial flow, and on the periphery of monsoon anticyclones.


2018 ◽  
Vol 31 (15) ◽  
pp. 6175-6187 ◽  
Author(s):  
Thando Ndarana ◽  
Mary-Jane Bopape ◽  
Darryn Waugh ◽  
Liesl Dyson

The link between Rossby wave breaking and ridging Atlantic Ocean anticyclones in the South African domain is examined using NCEP–DOE AMIP-II reanalysis data. A simple composite analysis, which used the duration of ridging events as a basis of averaging, reveals that ridging anticyclones are coupled with Rossby wave breaking at levels higher than the dynamical tropopause. Lower-stratospheric PV anomalies extend to the surface, thus coupling the ridging highs with the lower stratosphere. The anomaly extending from the 70-hPa level to the surface contributes to a southward extension of the surface negative anomaly over the Namibian coast, which induces a cyclonic flow, causing the ridging anticyclone to take a bean-like shape. The surface positive anomaly induces the internal anticyclonic flow within the large-scale pressure system, causing the ridging end to break off and amalgamate with the Indian Ocean high pressure system. Lower-stratospheric Rossby wave breaking lasts for as long as the ridging process, suggesting that the former is critical to the longevity of the latter by maintaining and keeping the vertical coupling intact.


2013 ◽  
Vol 70 (2) ◽  
pp. 607-626 ◽  
Author(s):  
Cameron R. Homeyer ◽  
Kenneth P. Bowman

Abstract Rossby wave breaking is an important mechanism for the two-way exchange of air between the tropical upper troposphere and lower stratosphere and the extratropical lower stratosphere. The authors present a 30-yr climatology (1981–2010) of anticyclonically and cyclonically sheared wave-breaking events along the boundary of the tropics in the 350–500-K potential temperature range from ECMWF Interim Re-Analysis (ERA-Interim). Lagrangian transport analyses show net equatorward transport from wave breaking near 380 K and poleward transport at altitudes below and above the 370–390-K layer. The finding of poleward transport at lower levels is in disagreement with previous studies and is shown to largely depend on the choice of tropical boundary. In addition, three distinct modes of transport for anticyclonic wave-breaking events are found near the tropical tropopause (380 K): poleward, equatorward, and symmetric. Transport associated with cyclonic wave-breaking events, however, is predominantly poleward. The three transport modes for anticyclonic wave breaking are associated with specific characteristics of the geometry of the mean flow. In particular, composite averages show that poleward transport is associated with a “split” subtropical jet where the jet on the upstream side of the breaking wave extends eastward and lies poleward and at lower altitudes of the subtropical jet on the downstream side, producing a substantial longitudinal overlap between the two jets. Equatorward transport is not associated with a split subtropical jet and is found immediately downstream of stationary anticyclones in the tropics, often associated with monsoon circulations. It is further shown that, in general, the transport direction of breaking waves is determined primarily by the relative positions of the jets.


2002 ◽  
Vol 107 (D23) ◽  
pp. ACL 12-1-ACL 12-14 ◽  
Author(s):  
N. G. Bradshaw ◽  
G. Vaughan ◽  
R. Busen ◽  
S. Garcelon ◽  
R. Jones ◽  
...  

2011 ◽  
Vol 68 (4) ◽  
pp. 798-811 ◽  
Author(s):  
Thando Ndarana ◽  
Darryn W. Waugh

Abstract A 30-yr climatology of Rossby wave breaking (RWB) on the Southern Hemisphere (SH) tropopause is formed using 30 yr of reanalyses. Composite analysis of potential vorticity and meridional fluxes of wave activity show that RWB in the SH can be divided into two broad categories: anticyclonic and cyclonic events. While there is only weak asymmetry in the meridional direction and most events cannot be classified as equatorward or poleward in terms of the potential vorticity structure, the position and structure of the fluxes associated with equatorward breaking differs from those of poleward breaking. Anticyclonic breaking is more common than cyclonic breaking, except on the lower isentrope examined (320 K). There are marked differences in the seasonal variations of RWB on the two surfaces, with a winter minimum for RWB around 350 K but a summer minimum for RWB around 330 K. These seasonal variations are due to changes in the location of the tropospheric jets and dynamical tropopause. During winter the subtropical jet and tropopause at 350 K are collocated in the Australian–South Pacific Ocean region, resulting in a seasonal minimum in the 350-K RWB. During summer the polar front jet and 330-K tropopause are collocated over the Southern Atlantic and Indian Oceans, inhibiting RWB in this region.


2013 ◽  
Vol 140 (680) ◽  
pp. 738-753 ◽  
Author(s):  
Iñigo Gómara ◽  
Joaquim G. Pinto ◽  
Tim Woollings ◽  
Giacomo Masato ◽  
Pablo Zurita-Gotor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document