scholarly journals On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003

2006 ◽  
Vol 6 (5) ◽  
pp. 1165-1180 ◽  
Author(s):  
S. Dhomse ◽  
M. Weber ◽  
I. Wohltmann ◽  
M. Rex ◽  
J. P. Burrows

Abstract. Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at northern hemispheric (NH) mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (equivalent effective stratospheric chlorine) and on the other hand planetary wave driving (eddy heat flux) or, alternatively, polar ozone loss (PSC volume) in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible signature of climate change.

2005 ◽  
Vol 5 (6) ◽  
pp. 11331-11375 ◽  
Author(s):  
S. Dhomse ◽  
M. Weber ◽  
I. Wohltmann ◽  
M. Rex ◽  
J. P. Burrows

Abstract. Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at NH mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (effective equivalent stratospheric chlorine) and on the other hand planetary wave driving (eddy heat flux) or, alternatively, polar ozone loss (PSC volume) in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of the natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible signature of climate change.


2011 ◽  
Vol 11 (21) ◽  
pp. 11221-11235 ◽  
Author(s):  
M. Weber ◽  
S. Dikty ◽  
J. P. Burrows ◽  
H. Garny ◽  
M. Dameris ◽  
...  

Abstract. The effect of the winter Brewer-Dobson circulation (BDC) on the seasonal and decadal evolution of total ozone in both hemispheres is investigated using satellite total ozone data from the merged GOME/SCIAMACHY/GOME-2 (GSG) data set (1995–2010) and outputs from two chemistry-climate models (CCM), the FUB-EMAC and DLR-E39C-A models. Combining data from both hemispheres a linear relationship between the winter average extratropical 100 hPa eddy heat flux and the ozone ratio with respect to fall ozone levels exists and is statistically significant for tropical as well as polar ozone. The high correlation at high latitudes persists well into the summer months until the onset of the next winter season. The anti-correlation of the cumulative eddy heat flux with tropical ozone ratios, however, breaks down in spring as the polar vortex erodes and changes to a weak positive correlation similar to that observed at high latitudes. The inter-annual variability and decadal evolution of ozone in each hemisphere in winter, spring, and summer are therefore driven by the cumulative effect of the previous winter's meridional circulation. This compact linear relationship is also found in both CCMs used in this study indicating that current models realistically describe the variability in stratospheric circulation and its effect on total ozone. Both models show a positive trend in the winter mean eddy heat flux (and winter BDC strength) in both hemispheres until year 2050, however the inter-annual variability (peak-to-peak) is two to three times larger than the mean change between 1960 and 2050. It is, nevertheless, possible to detect a shift in this compact linear relationship related to past and future changes in the stratospheric halogen load. Using the SBUV/TOMS/OMI (MOD V8) merged data set (1980–2010), it can be shown that from the decade 1990–1999 to 2000–2010 this linear relationship remained unchanged (before and after the turnaround in the stratospheric halogen load), while a shift is evident between 1980–1989 (upward trend in stratospheric halogen) and the 1990s, which is a clear sign that an onset of recovery is detectable despite the large variability in polar ozone. Because of the large variability from year to year in the BDC circulation substantial polar ozone depletion may still occur in coming decades in selected winters with weak BDC and very low polar stratospheric temperatures.


2008 ◽  
Vol 26 (5) ◽  
pp. 1207-1220 ◽  
Author(s):  
N. R. P. Harris ◽  
E. Kyrö ◽  
J. Staehelin ◽  
D. Brunner ◽  
S.-B. Andersen ◽  
...  

Abstract. The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC) which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes) playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds). Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent years are also considered, namely the tendency for cold winters to become colder.


2011 ◽  
Vol 24 (20) ◽  
pp. 5397-5415 ◽  
Author(s):  
Barbara Winter ◽  
Michel S. Bourqui

Abstract Using the chemistry climate model Intermediate General Circulation Model–Fast Stratospheric Ozone Chemistry (IGCM-FASTOC), the authors analyze the response in the Northern Hemisphere winter stratosphere to idealized thermal forcing imposed at the surface. The forcing is a 2-K temperature anomaly added to the control surface temperature at all grid points within a latitudinal window of 10° or 30°. The bandwise forcing is applied systematically throughout all latitudes of the Northern Hemisphere. Thermal forcing applied anywhere equatorward of 20°N, or continuously from the equator to 30°N, increases planetary-wave generation in the troposphere and enhances the flux of wave activity propagating vertically into the stratosphere. Consequently, a greater flux of wave activity breaks in the polar vortex, increasing the Brewer–Dobson circulation and leading to a warm anomaly in the polar stratosphere. Ozone concentration increases at high latitudes and decreases at low latitudes. Thermal surface forcing imposed between 30° and 60°N has the reverse effect—decreased planetary-wave generation in the lower troposphere and reduced vertically propagating wave flux entering the stratosphere—and leads to a stronger and colder vortex. Thermal forcing applied poleward of 60°N has little effect on the tropospheric mean state but nonetheless decreases the planetary-scale eddy heat flux from the surface to the tropopause, resulting in a sufficient decrease of the vertical flux of wave activity for the vortex to be anomalously strong and cold. When surface forcing is imposed only poleward of 30°N, ozone concentration decreases at high latitudes but is not affected at low latitudes. Combining the forcing in an equatorial and an extratropical band leads to a response similar to that of the equatorial forcing, demonstrating that the subtropical surface temperature changes determine the sign of the surface-driven response in the vortex.


2008 ◽  
Vol 8 (2) ◽  
pp. 251-264 ◽  
Author(s):  
R. Müller ◽  
J.-U. Grooß ◽  
C. Lemmen ◽  
D. Heinze ◽  
M. Dameris ◽  
...  

Abstract. We investigate the extent to which quantities that are based on total column ozone are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and also to assess the performance of chemistry-climate models. The most commonly considered quantities are March and October mean column ozone poleward of geometric latitude 63° and the spring minimum of daily total ozone minima poleward of a given latitude. Particularly in the Arctic, the former measure is affected by vortex variability and vortex break-up in spring. The minimum of daily total ozone minima poleward of a particular latitude is debatable, insofar as it relies on one single measurement or model grid point. We find that, for Arctic conditions, this minimum value often occurs in air outside the polar vortex, both in the observations and in a chemistry-climate model. Neither of the two measures shows a good correlation with chemical ozone loss in the vortex deduced from observations. We recommend that the minimum of daily minima should no longer be used when comparing polar ozone loss in observations and models. As an alternative to the March and October mean column polar ozone we suggest considering the minimum of daily average total ozone poleward of 63° equivalent latitude in spring (except for winters with an early vortex break-up). Such a definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex break-up on ozone loss measures. Further, this measure shows a reasonable correlation (r=–0.75) with observed chemical ozone loss. Nonetheless, simple measures of polar ozone loss must be used with caution; if possible, it is preferable to use more sophisticated measures that include additional information to disentangle the impact of transport and chemistry on ozone.


2013 ◽  
Vol 70 (12) ◽  
pp. 3977-3994 ◽  
Author(s):  
John R. Albers ◽  
Terrence R. Nathan

Abstract A mechanistic chemistry–dynamical model is used to evaluate the relative importance of radiative, photochemical, and dynamical feedbacks in communicating changes in lower-stratospheric ozone to the circulation of the stratosphere and lower mesosphere. Consistent with observations and past modeling studies of Northern Hemisphere late winter and early spring, high-latitude radiative cooling due to lower-stratospheric ozone depletion causes an increase in the modeled meridional temperature gradient, an increase in the strength of the polar vortex, and a decrease in vertical wave propagation in the lower stratosphere. Moreover, it is shown that, as planetary waves pass through the ozone loss region, dynamical feedbacks precondition the wave, causing a large increase in wave amplitude. The wave amplification causes an increase in planetary wave drag, an increase in residual circulation downwelling, and a weaker polar vortex in the upper stratosphere and lower mesosphere. The dynamical feedbacks responsible for the wave amplification are diagnosed using an ozone-modified refractive index; the results explain recent chemistry–coupled climate model simulations that suggest a link between ozone depletion and increased polar downwelling. The effects of future ozone recovery are also examined and the results provide guidance for researchers attempting to diagnose and predict how stratospheric climate will respond specifically to ozone loss and recovery versus other climate forcings including increasing greenhouse gas abundances and changing sea surface temperatures.


2008 ◽  
Vol 8 (3) ◽  
pp. 471-480 ◽  
Author(s):  
S. Dhomse ◽  
M. Weber ◽  
J. Burrows

Abstract. Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres) and tropical lower stratospheric (TLS) water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD) circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux), and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation). After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006). The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation) has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde) temperatures (up to 2005) with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor changes of about −0.2 ppm after 2000.


2016 ◽  
Vol 144 (4) ◽  
pp. 1321-1339 ◽  
Author(s):  
Hannah E. Attard ◽  
Rosimar Rios-Berrios ◽  
Corey T. Guastini ◽  
Andrea L. Lang

Abstract This paper investigates the tropospheric and stratospheric precursors to a major sudden stratospheric warming (SSW) that began on 6 January 2013. Using the Climate Forecast System Reanalysis dataset, the analysis identified two distinct decelerations of the 10-hPa zonal mean zonal wind at 65°N in December in addition to the major SSW, which occurred on 6 January 2013 when the 10-hPa zonal mean zonal wind at 65°N reversed from westerly to easterly. The analysis shows that the two precursor events preconditioned the stratosphere for the SSW. Analysis of the tropospheric state in the days leading to the precursor events and the major SSW suggests that high-latitude tropospheric blocks occurred in the days prior to the two December deceleration events, but not in the days prior to the SSW. A detailed wave activity flux (WAF) analysis suggests that the tropospheric blocking prior to the two December deceleration events contributed to an anomalously positive 40-day-average 100-hPa zonal mean meridional eddy heat flux prior to the SSW. Analysis of the stratospheric structure in the days prior to the SSW reveals that the SSW was associated with enhanced WAF in the upper stratosphere, planetary wave breaking, and an upper-stratospheric/lower-mesospheric disturbance. These results suggest that preconditioning of the stratosphere occurred as a result of WAF initiated by tropospheric blocking associated with the two December deceleration events. The two December deceleration events occurred in the 40 days prior to the SSW and led to the amplification of wave activity in the upper stratosphere and wave resonance that caused the January 2013 SSW.


2011 ◽  
Vol 11 (5) ◽  
pp. 13829-13865 ◽  
Author(s):  
M. Weber ◽  
S. Dikty ◽  
J. P. Burrows ◽  
H. Garny ◽  
M. Dameris ◽  
...  

Abstract. The effect of the winter Brewer-Dobson circulation (BDC) on the seasonal and decadal evolution of total ozone in both hemispheres is investigated using satellite total ozone data and outputs from two chemistry-climate models (CCM). Combining data from both hemispheres a linear relationship between the winter cumulative extratropical 100 hPa eddy heat flux and the ozone ratio with respect to fall ozone levels exists and is statistically significant for tropical as well as polar ozone. The high correlation at high latitudes persists well into the summer months until the onset of the next winter season. The anti-correlation of the cumulative eddy heat flux with tropical ozone ratios, however, breaks down in spring as the polar vortex erodes and changes to a weak positive correlation similar to that observed at high latitudes. The inter-annual variability and decadal evolution of ozone in each hemisphere in winter, spring, and summer are therefore driven by the cumulative effect of the previous winter's meridional circulation. This compact linear relationship is also found in two different CCMs (EMAC-FUB, DLR-E39C-A) indicating that current models realistically describe the variability in stratospheric circulation and its climate effect on total ozone. Both models show a positive trend in the winter mean eddy heat flux (and winter BDC strength) in both hemispheres until year 2050, however the inter-annual variability (peak-to-peak) is two to three times larger than the mean change between 1960 and 2050. It is, therefore, possible to detect a shift in this compact linear relationship related to past and future changes in the stratospheric halogen load. A similar shift is difficult to derive from observational data since the satellite era now spanning more than thirty years is still fairly short.


2021 ◽  
Author(s):  
Timo Asikainen ◽  
Antti Salminen ◽  
Ville Maliniemi ◽  
Kalevi Mursula

<p>The northern polar vortex experiences considerable inter-annual variability, which is also reflected to tropospheric weather. Recent research has established a link between polar vortex variations and energetic electron precipitation (EEP) from the near-Earth space into the polar atmosphere, which is mediated by EEP-induced chemical changes causing ozone loss in the mesosphere and stratosphere. However, the most dramatic changes in the polar vortex are due to strong enhancements of planetary wave activity, which typically result in a sudden stratospheric warming (SSW), a momentary breakdown of the polar vortex. Here we use the SSWs as an indicator of high planetary wave activity and consider their influence of SSWs on the atmospheric response to EEP in 1957-2017 using combined ERA-40 and ERA-Interim re-analysis data and geomagnetic activity as a proxy of EEP. We find that the EEP-related enhancement of the polar vortex and other associated dynamical responses are seen only during winters when a SSW occurs, and that the EEP-related changes take place slightly before the SSW onset. We show that the atmospheric conditions preceding SSWs favor enhanced wave-mean-flow interaction, which can dynamically amplify the initial polar vortex enhancement caused by ozone loss. These results highlight the importance of considering SSWs and sufficient level of planetary wave activity as a necessary condition for observing the effects of EEP on the polar vortex dynamics.</p>


Sign in / Sign up

Export Citation Format

Share Document