Sensitivity of the Stratospheric Circulation to the Latitude of Thermal Surface Forcing*

2011 ◽  
Vol 24 (20) ◽  
pp. 5397-5415 ◽  
Author(s):  
Barbara Winter ◽  
Michel S. Bourqui

Abstract Using the chemistry climate model Intermediate General Circulation Model–Fast Stratospheric Ozone Chemistry (IGCM-FASTOC), the authors analyze the response in the Northern Hemisphere winter stratosphere to idealized thermal forcing imposed at the surface. The forcing is a 2-K temperature anomaly added to the control surface temperature at all grid points within a latitudinal window of 10° or 30°. The bandwise forcing is applied systematically throughout all latitudes of the Northern Hemisphere. Thermal forcing applied anywhere equatorward of 20°N, or continuously from the equator to 30°N, increases planetary-wave generation in the troposphere and enhances the flux of wave activity propagating vertically into the stratosphere. Consequently, a greater flux of wave activity breaks in the polar vortex, increasing the Brewer–Dobson circulation and leading to a warm anomaly in the polar stratosphere. Ozone concentration increases at high latitudes and decreases at low latitudes. Thermal surface forcing imposed between 30° and 60°N has the reverse effect—decreased planetary-wave generation in the lower troposphere and reduced vertically propagating wave flux entering the stratosphere—and leads to a stronger and colder vortex. Thermal forcing applied poleward of 60°N has little effect on the tropospheric mean state but nonetheless decreases the planetary-scale eddy heat flux from the surface to the tropopause, resulting in a sufficient decrease of the vertical flux of wave activity for the vortex to be anomalously strong and cold. When surface forcing is imposed only poleward of 30°N, ozone concentration decreases at high latitudes but is not affected at low latitudes. Combining the forcing in an equatorial and an extratropical band leads to a response similar to that of the equatorial forcing, demonstrating that the subtropical surface temperature changes determine the sign of the surface-driven response in the vortex.

2006 ◽  
Vol 6 (5) ◽  
pp. 1165-1180 ◽  
Author(s):  
S. Dhomse ◽  
M. Weber ◽  
I. Wohltmann ◽  
M. Rex ◽  
J. P. Burrows

Abstract. Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at northern hemispheric (NH) mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (equivalent effective stratospheric chlorine) and on the other hand planetary wave driving (eddy heat flux) or, alternatively, polar ozone loss (PSC volume) in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible signature of climate change.


2005 ◽  
Vol 5 (6) ◽  
pp. 11331-11375 ◽  
Author(s):  
S. Dhomse ◽  
M. Weber ◽  
I. Wohltmann ◽  
M. Rex ◽  
J. P. Burrows

Abstract. Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at NH mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (effective equivalent stratospheric chlorine) and on the other hand planetary wave driving (eddy heat flux) or, alternatively, polar ozone loss (PSC volume) in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of the natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible signature of climate change.


1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


2009 ◽  
Vol 22 (6) ◽  
pp. 1329-1339 ◽  
Author(s):  
Yi Ming ◽  
V. Ramaswamy

Abstract The equilibrium temperature and hydrological responses to the total aerosol effects (i.e., direct, semidirect, and indirect effects) are studied using a modified version of the Geophysical Fluid Dynamics Laboratory atmosphere general circulation model (AM2.1) coupled to a mixed layer ocean model. The treatment of aerosol–liquid cloud interactions and associated indirect effects is based upon a prognostic scheme of cloud droplet number concentration, with an explicit representation of cloud condensation nuclei activation involving sulfate, organic carbon, and sea salt aerosols. Increasing aerosols from preindustrial (1860) to present-day (1990) levels leads to a decrease of 1.9 K in the global annual mean surface temperature. The cooling is relatively strong over the Northern Hemisphere midlatitude land owing to the high aerosol burden there, while being amplified at high latitudes. When being subject to aerosols and radiatively active gases (i.e., well-mixed greenhouse gases and ozone) simultaneously, the model climate behaves nonlinearly; the simulated increase in surface temperature (0.55 K) is considerably less than the arithmetic sum of separate aerosol and gas effects (0.86 K). The thermal responses are accompanied by the nonlinear changes in cloud fields, which are amplified owing to the surface albedo feedback at high latitudes. The two effects completely offset each other in the Northern Hemisphere, while gas effect is dominant in the Southern Hemisphere. Both factors are crucial in shaping the regional responses. Interhemispheric asymmetry in aerosol-induced cooling yields a southward shift of the intertropical convergence zone, thus giving rise to a significant reduction in precipitation north of the equator, and an increase to the south. The simulations show that the change of precipitation in response to the simultaneous increases in aerosols and gases not only largely follows the same pattern as that for aerosols alone, but that it is also substantially strengthened in terms of magnitude south of 10°N. This is quite different from the damping expected from adding up individual responses, and further indicates the nonlinearity in the model’s hydrological response.


2018 ◽  
Author(s):  
Wen Yi ◽  
Xianghui Xue ◽  
Iain M. Reid ◽  
Damian J. Murphy ◽  
Chris M. Hall ◽  
...  

Abstract. The existing distribution of meteor radars located from high- to low-latitude regions provides a favourable temporal and spatial coverage for investigating the climatology of the global mesopause density. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars, namely, the Davis Station (68.6° S, 77.9° E), Svalbard (78.3° N, 16° E) and Tromsø (69.6° N, 19.2° E) meteor radars located at high latitudes, the Mohe (53.5° N, 122.3° E), Beijing (40.3° N, 116.2° E), Mengcheng (33.4° N, 116.6° E) and Wuhan (30.5° N, 114.6° E) meteor radars located in the mid-latitudes, and the Kunming (25.6° N, 103.8° E) and Darwin (12.3° S, 130.8° E) meteor radars located at low latitudes. The daily mean density was estimated using ambipolar diffusion coefficients derived from the meteor radars and temperatures from the Microwave Limb Sounder (MLS) on board the Aura satellite. The seasonal variations in the Davis Station meteor radar densities in the southern polar mesopause are mainly dominated by an annual oscillation (AO). The mesopause densities observed by the Svalbard and Tromsø meteor radars at high latitudes and the Mohe and Beijing meteor radars at high mid-latitudes in the Northern Hemisphere show mainly an AO and a relatively weak semiannual oscillation (SAO). The mesopause densities observed by the Mengcheng and Wuhan meteor radars at lower mid-latitudes and the Kunming and Darwin meteor radars at low latitudes show mainly an AO. The SAO is evident in the Northern Hemisphere, especially at high latitudes, and its largest amplitude, which is detected at the Tromsø meteor radar, is comparable to the AO amplitudes. These observations indicate that the mesopause densities over the southern and northern high latitudes exhibit a clear seasonal asymmetry. The maxima of the yearly variations in the mesopause densities display a clear temporal variation across the spring equinox as the latitude decreases; these latitudinal variation characteristics may be related to latitudinal changes influenced by gravity wave forcing. In addition to an AO, the mesopause densities over low latitudes also clearly show a variation with a periodicity of 30–60 days related to the Madden-Julian oscillation in the subtropical troposphere.


2008 ◽  
Vol 8 (3) ◽  
pp. 471-480 ◽  
Author(s):  
S. Dhomse ◽  
M. Weber ◽  
J. Burrows

Abstract. Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres) and tropical lower stratospheric (TLS) water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD) circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux), and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation). After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006). The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation) has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde) temperatures (up to 2005) with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor changes of about −0.2 ppm after 2000.


2016 ◽  
Vol 144 (4) ◽  
pp. 1321-1339 ◽  
Author(s):  
Hannah E. Attard ◽  
Rosimar Rios-Berrios ◽  
Corey T. Guastini ◽  
Andrea L. Lang

Abstract This paper investigates the tropospheric and stratospheric precursors to a major sudden stratospheric warming (SSW) that began on 6 January 2013. Using the Climate Forecast System Reanalysis dataset, the analysis identified two distinct decelerations of the 10-hPa zonal mean zonal wind at 65°N in December in addition to the major SSW, which occurred on 6 January 2013 when the 10-hPa zonal mean zonal wind at 65°N reversed from westerly to easterly. The analysis shows that the two precursor events preconditioned the stratosphere for the SSW. Analysis of the tropospheric state in the days leading to the precursor events and the major SSW suggests that high-latitude tropospheric blocks occurred in the days prior to the two December deceleration events, but not in the days prior to the SSW. A detailed wave activity flux (WAF) analysis suggests that the tropospheric blocking prior to the two December deceleration events contributed to an anomalously positive 40-day-average 100-hPa zonal mean meridional eddy heat flux prior to the SSW. Analysis of the stratospheric structure in the days prior to the SSW reveals that the SSW was associated with enhanced WAF in the upper stratosphere, planetary wave breaking, and an upper-stratospheric/lower-mesospheric disturbance. These results suggest that preconditioning of the stratosphere occurred as a result of WAF initiated by tropospheric blocking associated with the two December deceleration events. The two December deceleration events occurred in the 40 days prior to the SSW and led to the amplification of wave activity in the upper stratosphere and wave resonance that caused the January 2013 SSW.


2009 ◽  
Vol 9 (4) ◽  
pp. 14601-14643
Author(s):  
S. P. Alexander ◽  
M. G. Shepherd

Abstract. Temperature data from the COSMIC GPS-RO satellite constellation are used to study planetary wave activity in both polar stratospheres from September 2006 until November 2008. One major and several minor sudden stratospheric warmings (SSWs) were recorded during the boreal winters of 2006/2007 and 2007/2008. Planetary wave morphology is studied using space-time spectral analysis while individual waves are extracted using a linear least squares fitting technique. Results show the planetary wave frequency and zonal wavenumber distribution varying between hemisphere and altitude. Most of the large Northern Hemisphere wave activity is associated with the winter SSWs, while the largest amplitude waves in the Southern Hemisphere occur during spring. Planetary wave activity during the 2006/2007 and 2007/2008 Arctic SSWs is due largely to travelling waves with zonal wavenumbers |s|=1 and |s|=2 having periods of 12, 16 and 23 days and stationary waves with |s|=1 and |s|=2. The latitudinal variation of wave amplification during the two Northern Hemisphere winters is studied. Most planetary waves show different structure and behaviour during each winter. Abrupt changes in the latitude of maximum amplitude of some planetary waves is observed co-incident in time with some of the SSWs.


2006 ◽  
Vol 6 (5) ◽  
pp. 9563-9581 ◽  
Author(s):  
S. Dhomse ◽  
M. Weber ◽  
J. Burrows

Abstract. The compact relationship between stratospheric temperatures (as well as ozone) and tropospheric generated planetary wave activity have been widely discussed. Higher wave activity leads to a strengthening of the Brewer-Dobson (BD) circulation, which results in warmer/colder temperatures in the polar/tropical stratosphere. The influence of this wave activity on stratospheric water vapor (WV) is not yet well explored primarily due to lack of high quality long term data sets. Using WV data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres) and tropical lower stratospheric (TLS) WV has been found. This appears to be the most direct manifestation of the inter-annual variability of the known relationship between ascending motion in the tropical stratosphere (due to rising branch of the BD circulation) and the amount of the WV entering into the stratosphere from the tropical tropopause layer. A decrease in planetary wave activity in the mid-nineties is probably responsible for the increasing trends in stratospheric WV until late 1990s. After 2000 a sudden decrease in lower stratospheric WV has been reported and was observed by different satellite instruments such as HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres. The low water vapor and enhanced strength of the Brewer-Dobson circulation has persisted until now. It is estimated that the strengthening of the BD circulation after 2000 contributed to a 0.7 K cooling in the TLS.


Sign in / Sign up

Export Citation Format

Share Document