scholarly journals Evolution of NO<sub>x</sub> emissions in Europe with focus on road transport control measures

2009 ◽  
Vol 9 (4) ◽  
pp. 1503-1520 ◽  
Author(s):  
V. Vestreng ◽  
L. Ntziachristos ◽  
A. Semb ◽  
S. Reis ◽  
I. S. A. Isaksen ◽  
...  

Abstract. European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880–1950) is determined by a slow increase in fuel consumption all over Europe. The second regime (1950–1980) is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980–1990) that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990–2000) involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000–2005), the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable in the evolution of European road traffic emissions over the last 15 years.

2008 ◽  
Vol 8 (3) ◽  
pp. 10697-10747 ◽  
Author(s):  
V. Vestreng ◽  
L. Ntziachristos ◽  
A. Semb ◽  
S. Reis ◽  
I. S. A. Isaksen ◽  
...  

Abstract. European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880–1950) is determined by a slow increase in fuel consumption all over Europe. The second regime (1950–1980) is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980–1990) that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990–2000) involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000–2005), the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable in the evolution of European road traffic emissions over the last 15 years.


2007 ◽  
Vol 7 (7) ◽  
pp. 1707-1718 ◽  
Author(s):  
S. Matthes ◽  
V. Grewe ◽  
R. Sausen ◽  
G.-J. Roelofs

Abstract. Road traffic is one of the major anthropogenic emission sectors for NOx, CO and NMHCs (non-methane hydrocarbons). We applied ECHAM4/CBM, a general circulation model coupled to a chemistry module, which includes higher hydrocarbons, to investigate the global impact of 1990 road traffic emissions on the atmosphere. Improving over previous global modelling studies, which concentrated on road traffic NOx and CO emissions only, we assess the impact of NMHC emissions from road traffic. It is revealed that NMHC emissions from road traffic play a key role for the impact on ozone. They are responsible for (indirect) long-range transport of NOx from road traffic via the formation of PAN, which is not found in a simulation without NMHC emissions from road traffic. Long-range transport of NMHC-induced PAN impacts on the ozone distribution in Northern Hemisphere regions far away from the sources, especially in arctic and remote maritime regions. In July total road traffic emissions (NOx, CO and NMHCs) contribute to the zonally averaged ozone distribution by more than 12% near the surface in the Northern Hemisphere midlatitudes and arctic latitudes. In January road traffic emissions contribute near the surface in northern and southern extratropics more than 8%. Sensitivity studies for regional emission show that effective transport of road traffic emissions occurs mainly in the free troposphere. In tropical latitudes of America up to an altitude of 200 hPa, global road traffic emissions contribute about 8% to the ozone concentration. In arctic latitudes NMHC emissions from road transport are responsible for about 90% of PAN increase from road transport, leading to a contribution to ozone concentrations of up to 15%.


Author(s):  
Thomas L. McCluskey ◽  
Mauro Vallati ◽  
Santiago Franco

The global growth in urbanisation increases the demand for services including road transport infrastructure, presenting challenges in terms of mobility. Optimising the exploitation of urban road network, while attempting to minimise the effects of traffic emissions, is a great challenge. SimplyfAI was a UK research council grant funded project which was aimed towards solving air quality problems caused by road traffic emissions. Large cities such as Manchester struggle to meet air quality limits as the range of available traffic management devices is limited. In the study, we investigated the application of linked data to enrich environmental and traffic data feeds, and we used this with automated planning tools to enable traffic to be managed at a region level. The management will have the aim of avoiding air pollution problems before they occur. This demo focuses on the planning component, and in particular the engineering and validation aspects, that were pivotal for the success of the project.


2016 ◽  
Author(s):  
Ronald J. van der A ◽  
Bas Mijling ◽  
Jieying Ding ◽  
Maria Elissavet Koukouli ◽  
Fei Liu ◽  
...  

Abstract. Air quality observations by satellite instruments are spatially consistent, and have a regular temporal resolution, which make them very useful in studying long-term trends in atmospheric species. To monitor air quality trends in China for the period 2005–2015 we derive SO2 columns and NOx emissions on a provincial level with an unprecedented accuracy. To put these trends into perspective they are compared with public data on energy consumption and the environmental policies of China. We distinguish the effect of air quality regulations from economic growth by comparing them relatively to fossil fuel consumption. Pollutant levels, per unit of fossil fuel, are used to assess the effectiveness of air quality regulations. We note that the desulphurisation regulations enforced in 2005–2006 only had a significant effect in the years 2008–2009 when a much stricter control of the actual use of the installations began. For national NOx emissions a distinct decreasing trend is only visible since 2012, but the emission peak year differs from province to province. Unlike SO2, emissions of NOx are highly related to traffic. Furthermore, regulations for NOx emissions are partly decided on a provincial level. The last three years show both a reduction in SO2 and NOx emissions per fossil fuel unit, since the authorities have implemented several new environmental regulations. Despite an increasing fossil fuel consumption and a growing transport sector, the effects of air quality policy in China are clearly visible. Without the air quality regulations the concentration of SO2 would be almost 3 times higher and the NO2 concentrations would be at least 30 % higher than they are today in China.


2020 ◽  
Vol 182 (3) ◽  
pp. 54-58
Author(s):  
Andrzej Ziółkowski ◽  
Paweł Fuć ◽  
Piotr Lijewski ◽  
Łukasz Rymaniak ◽  
Paweł Daszkiewicz ◽  
...  

Road transport holds for the largest share in the freight transport sector in Europe. This work is carried out by heavy vehicles of various types. It is assumed that, in principle, transport should take place on the main road connections, such as motorways or national roads. Their share in the polish road infrastructure is not dominant. Rural and communal roads roads are the most prevalent. This fact formed the basis of the exhaust emissions and fuel consumption tests of heavy vehicles in real operating conditions. A set of vehicles (truck tractor with a semi-trailer) meeting the Euro V emission norm, transporting a load of 24,800 kg, was selected for the tests. The research was carried out on an non-urban route, the test route length was 22 km. A mobile Semtech DS instrument was used, which was used to measure the exhaust emissions. Based on the obtained results, the emission characteristics were determined in relation to the operating parameters of the vehicles drive system. Road emission, specific emission and fuel consumption values were also calculated.


2020 ◽  
Vol 47 ◽  
pp. 648-655 ◽  
Author(s):  
Eloísa Macedo ◽  
Ricardo Tomás ◽  
Paulo Fernandes ◽  
Margarida C. Coelho ◽  
Jorge M. Bandeira

Author(s):  
Martin Otto Paul Ramacher ◽  
Matthias Karl

To evaluate the effectiveness of alternative policies and measures to reduce air pollution effects on urban citizen’s health, population exposure assessments are needed. Due to road traffic emissions being a major source of emissions and exposure in European cities, it is necessary to account for differentiated transport environments in population dynamics for exposure studies. In this study, we applied a modelling system to evaluate population exposure in the urban area of Hamburg in 2016. The modeling system consists of an urban-scale chemistry transport model to account for ambient air pollutant concentrations and a dynamic time-microenvironment-activity (TMA) approach, which accounts for population dynamics in different environments as well as for infiltration of outdoor to indoor air pollution. We integrated different modes of transport in the TMA approach to improve population exposure assessments in transport environments. The newly developed approach reports 12% more total exposure to NO2 and 19% more to PM2.5 compared with exposure estimates based on residential addresses. During the time people spend in different transport environments, the in-car environment contributes with 40% and 33% to the annual sum of exposure to NO2 and PM2.5, in the walking environment with 26% and 30%, in the cycling environment with 15% and 17% and other environments (buses, subway, suburban, and regional trains) with less than 10% respectively. The relative contribution of road traffic emissions to population exposure is highest in the in-car environment (57% for NO2 and 15% for PM2.5). Results for population-weighted exposure revealed exposure to PM2.5 concentrations above the WHO AQG limit value in the cycling environment. Uncertainties for the exposure contributions arising from emissions and infiltration from outdoor to indoor pollutant concentrations range from −12% to +7% for NO2 and PM2.5. The developed “dynamic transport approach” is integrated in a computationally efficient exposure model, which is generally applicable in European urban areas. The presented methodology is promoted for use in urban mobility planning, e.g., to investigate on policy-driven changes in modal split and their combined effect on emissions, population activity and population exposure.


2001 ◽  
Vol 106 (D16) ◽  
pp. 17997-18014 ◽  
Author(s):  
Ines Köhler ◽  
Martin Dameris ◽  
Ingmar Ackermann ◽  
Heinz Hass

Sign in / Sign up

Export Citation Format

Share Document