scholarly journals Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

2009 ◽  
Vol 9 (14) ◽  
pp. 5299-5319 ◽  
Author(s):  
N. Montoux ◽  
A. Hauchecorne ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
G. Durry ◽  
...  

Abstract. Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February–March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20–25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20–25 km. Compared to HALOE of ±10% accuracy between 0.1–100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16–20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16–18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4–5 ppmv observed by the μSDLA. Differences between μSDLA and HALOE and SAGE II (of the order of −2 ppmv), SCIAMACHY, MIPAS and GOMOS (−1 ppmv) and SAOZ (−0.5 ppmv), exceed the 10% uncertainty of μSDLA, implying larger systematic errors than estimated for the various instruments. In the upper troposphere, where the water vapour concentration is highly variable, AIRS v5 appears to be the most consistent within its 25% uncertainty with balloon in-situ measurements as well as ECMWF. Most of the remote measurements show less reliability in the upper troposphere, losing sensitivity possibly because of absorption line saturation in their spectral ranges (HALOE, SAGE II and SCIAMACHY), instrument noise exceeding 100% (MIPAS) or imperfect refraction correction (GOMOS). An exception is the SAOZ-balloon, employing smaller H2O absorption bands in the troposphere.

2007 ◽  
Vol 7 (3) ◽  
pp. 6037-6075 ◽  
Author(s):  
N. Montoux ◽  
A. Hauchecorne ◽  
J.-P. Pommereau ◽  
G. Durry ◽  
B. Morel ◽  
...  

Abstract. Among the objectives of the HIBISCUS campaign was the study of water vapour in the tropical upper troposphere and lower stratosphere (UTLS) by balloon borne in situ and remote sensing, offering a unique opportunity for evaluating the performances of balloon and satellite water vapour data available at the southern tropics in February-April 2004. Instruments evaluated include balloon borne in situ tunable diode laser spectrometer (μ SDLA) and surface acoustic wave hygrometer (SAW), and remote sensing with a near IR spectrometer (SAOZ) flown on a circumnavigating long duration balloon. The satellite systems available are those of AIRS/AMSU (v4), SAGE-II (v6.2), HALOE (v19), MIPAS (v4.62) and GOMOS (v6.0). In the stratosphere between 20–25 km, three satellite instruments, HALOE, SAGE-II and MIPAS, are showing very consistent results (nearly constant mixing ratios), while AIRS, GOMOS and the SAOZ balloon are displaying a slight increase with altitude. Considering the previous studies, the first three appear the most precise at this level, HALOE being the less variable (5%), close to the atmospheric variability shown by the REPROBUS/ECMWF Chemistry-Transport model. The three others are showing significantly larger variability, AIRS being the most variable (35%), followed by GOMOS (25%) and SAOZ (20%). Lower down in the Tropical Tropopause Layer between 14–20 km, HALOE and SAGE-II are showing marked minimum mixing ratios around 17–19 km, not seen by all others. For HALOE, this might be related to an altitude registration error already identified on ozone, while for SAGE-II, a possible explanation could be the persistence of the dry bias displayed by previous retrieval versions, not completely removed in version 6.2. On average, MIPAS is consistent with AIRS, GOMOS and SAOZ, not displaying the dry bias observed in past versions, but a fast degradation of precision below 20 km. Compared to satellites, the μ SDLA measurements shows systematically larger humidity although this conclusion may be biased by the fact that the balloon flights were carried out intentionally next or above strong convective systems where remote observations from space are difficult. In the upper troposphere below 14 km, all remote sensing measurements (except MIPAS of limited precision, and AIRS/AMSU) become rare, dry biased and less variable compared to ECMWF, but particularly HALOE and SAGE-II. The main reason for that is the frequent masking by clouds within which no remote measurements could be performed except by the AMSU microwave. Water vapour remote sensing profiles are representative of cloud free conditions only and thus dryer and less variable on average than ECMWF and AIRS/AMSU. Always in the upper troposphere, two in-situ instruments, μ SDLA and SAW, flown on the same balloon agree each other, displaying water vapour mixing ratios 100–200% larger than that of HALOE and MIPAS, which could be explained by the large ice supersaturation of the layer up to the tropopause, hardly detectable from the orbit.


2014 ◽  
Vol 7 (12) ◽  
pp. 12827-12849 ◽  
Author(s):  
A. Seidel ◽  
S. Wagner ◽  
A. Dreizler ◽  
V. Ebert

Abstract. We have developed a fast, spatially direct scanning tunable diode laser absorption spectrometer (dTDLAS) that combines four polygon-mirror based scanning units with low-cost retro-reflective foils. With this instrument, tomographic measurements of absolute 2-D water vapour concentration profiles are possible without any calibration using a reference gas. A spatial area of 0.8 m × 0.8 m was covered, which allows for application in soil physics, where greenhouse gas emission from certain soil structures shall be monitored. The whole concentration field was measured with up to 2.5 Hz. In this paper, we present the setup and spectroscopic performance of the instrument regarding the influence of the polygon rotation speed and mode on the absorption signal. Homogeneous H2O distributions were measured and compared to a single channel, bi-static reference TDLAS spectrometer for validation of the instrument. Good accuracy and precision with errors of less than 6% of the absolute concentration and length and bandwidth normalized detection limits of up to 1.1 ppmv · m · √Hz−1 were achieved. The spectrometer is a robust and easy to set up instrument for tomographic reconstructions of 2-D-concentration fields that can be considered a good basis for future field measurements in environmental research.


2009 ◽  
Vol 9 (13) ◽  
pp. 4407-4417 ◽  
Author(s):  
S. Lossow ◽  
M. Khaplanov ◽  
J. Gumbel ◽  
J. Stegman ◽  
G. Witt ◽  
...  

Abstract. The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E) with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.


2020 ◽  
Author(s):  
Shujiro Komiya ◽  
Fumiyoshi Kondo ◽  
Heiko Moossen ◽  
Thomas Seifert ◽  
Uwe Schultz ◽  
...  

Abstract. The recent development and improvement of commercial laser-based spectrometers have expanded in situ continuous observations of water vapour (H2O) stable isotope ratios (e.g., δ18O, δ2H, etc.) in a variety of sites worldwide. However, we still lack continuous observations in the Amazon, a region that significantly influences atmospheric and hydrological cycles on local to global scales. In order to achieve accurate on-site observations, commercial water isotope analysers require regular in situ calibration, including H2O concentration dependence ([H2O]-dependence) of isotopic accuracy. Past studies have assessed [H2O]-dependence for air with H2O concentrations up to 35,000 ppm, a value that is frequently surpassed in tropical rainforest settings like the central Amazon where we plan continuous observations. Here we investigated the performance of two commercial analysers (L1102i and L2130i models, Picarro, Inc., USA) for measuring δ18O and δ2H in atmospheric moisture at four different H2O levels from 21,500 to 41,000 ppm. These H2O levels were created by a custom-built calibration unit designed for regular in situ calibration. Measurements on the newer analyser model (L2130i) had better precision for δ18O and δ2H and demonstrated less influence of H2O concentration on the measurement accuracy at each moisture level compared to the older L1102i. Based on our findings, we identified the most appropriate calibration strategy for [H2O]-dependence, adapted to our calibration system. The best strategy required using two pairs of a two-point calibration with four different H2O concentration levels. The smallest uncertainties in calibrating [H2O]-dependence of isotopic accuracy of the two analysers were achieved using a linear-surface fitting method and a 28 h calibration interval, except for the δ18O accuracy of the L1102i analyser for which the cubic fitting method gave best results. The uncertainties in [H2O]-dependence calibration did not show any significant difference using calibration intervals from 28 h up to 196 h; this suggested that one [H2O]-dependence calibration per week for the L2130i and L1102i analysers is sufficient.


2007 ◽  
Vol 85 (2) ◽  
pp. 119-129 ◽  
Author(s):  
P S Argall ◽  
R J Sica ◽  
C R Bryant ◽  
M Algara-Siller ◽  
H Schijns

Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapour and nitrogen molecules allows height profiles of the water-vapour mixing ratio to be measured from 500 m up into the lower stratosphere. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 to 40 km altitude. However, external calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL-derived water-vapour concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights, respectively, was undertaken to provide this calibration. The calibration is then applied to the measurements and monthly mean-temperature and water-vapour profiles are determined.PACS Nos.: 42.68.Wt, 42.79.Qx


2020 ◽  
Author(s):  
Harald Boenisch ◽  
Andreas Zahn ◽  
Luis Millan

<p>The CARIBIC (Civil  Aircraft  for  the  Regular  Investigation  of the atmosphere Based on an <br>Instrumented Container) project is part of the a European research infrastructure IAGOS (In-<br>Service Aircraft for a Global Observing System) making regular in-situ measurements of more <br>than 100 atmospheric constituents, include ozone and water vapour, on-board of an in-service <br>passenger  aircraft  operated  by  Lufthansa.  The  dataset  of  the  IAGOS-CARIBIC  is  therefore <br>ideally suited as a testbed for the SPARC (Stratosphere-troposphere Processes And their Role <br>in Climate) activity OCTAV-UTLS (Observed Composition Trends And Variability in the Upper <br>Troposphere and Lower Stratosphere). One key aspect, shown here as work in progress, is to <br>develop, define and apply common metrics for the comparison of different UTLS datasets <br>using a variety of meteorological coordinate systems derived from reanalysis datasets. The <br>focus here is on the variability of ozone in the upper troposphere and lower stratosphere <br>(UTLS) on interannual and seasonal timescales and the observed trends. The in-situ ozone <br>measurements by IAGOS-CARIBIC are analysed relative to different tropopause definitions <br>and coordinate systems. All these meteorological information applied here are produced with <br>the JETPAC tool ‒ Jet and Tropopause Products for Analysis and Characterization (Manney et <br>al., 2011).</p>


2007 ◽  
Vol 7 (5) ◽  
pp. 1471-1489 ◽  
Author(s):  
V. Marécal ◽  
G. Durry ◽  
K. Longo ◽  
S. Freitas ◽  
E. D. Rivière ◽  
...  

Abstract. In this study, we evaluate the ability of the BRAMS (Brazilian Regional Atmospheric Modeling System) mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to the ECMWF analysis. The observations exhibit fine scale vertical structures of water vapour of a few hundred meters height. The ECMWF vertical resolution (~1 km) is too coarse to capture these vertical structures in the UTLS. With a vertical resolution similar to ECMWF, the mesoscale model performs better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The BRAMS model with 250 m vertical resolution is able to capture more of the observed fine scale vertical variations of water vapour compared to runs with a coarser vertical resolution. This is mainly related to: (i) the enhanced vertical resolution in the UTLS and (ii) to the more detailed microphysical parameterization providing ice supersaturations as in the observations. In near saturated or supersaturated layers, the mesoscale model predicted relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, the ECMWF analysis gives good results partly attributed to data assimilation. The analysis of the mesoscale model results showed that the vertical variations of the water vapour profile depends on the dynamics in unsaturated layer while the microphysical processes play a major role in saturated/supersaturated layers. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly drier than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale process acts in the stratosphere leading to no modification of the BRAMS results with respect to ECMWF analysis.


2006 ◽  
Vol 6 (4) ◽  
pp. 8241-8284 ◽  
Author(s):  
V. Marécal ◽  
G. Durry ◽  
K. Longo ◽  
S. Freitas ◽  
E. D. Rivière ◽  
...  

Abstract. In this study, we evaluate the ability of the BRAMS mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to ECMWF analysis. The mesoscale model performs significantly better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The improvement provided by the mesoscale model for water vapour comes mainly from (i) the enhanced vertical resolution in the UTLS (250 m for BRAMS and ~1 km for ECMWF model) and (ii) the more detailed microphysical parameterization providing ice supersaturations as in the observations. The ECMWF vertical resolution (~1 km) is too coarse to capture the observed fine scale vertical variations of water vapour in the UTLS. In near saturated or supersaturated layers, the mesoscale model relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, ECMWF analysis gives good results partly thanks to data assimilation. The analysis of the mesoscale model results showed that in undersaturated layers, the water vapour profile depends mainly on the dynamics. In saturated/supersaturated layers, microphysical processes play an important role and have to be taken into account on top of the dynamical processes to understand the water vapour profiles. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly dryer than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale process acts in the stratosphere leading to no modification of the BRAMS results with respect to ECMWF analysis.


2008 ◽  
Vol 8 (3) ◽  
pp. 12227-12252 ◽  
Author(s):  
S. Lossow ◽  
M. Khaplanov ◽  
J. Gumbel ◽  
J. Stegman ◽  
G. Witt ◽  
...  

Abstract. The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden, with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In-situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using water vapour as a dynamical tracer it was possible to directly relate the water data to the position of the polar vortex. The measurement probed extra-vortex air below 19 km and in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour characteristics. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere and are consistent with efficient downward transport of air inside the vortex. It is evident that in-situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.


Sign in / Sign up

Export Citation Format

Share Document