scholarly journals Modelling day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy

2010 ◽  
Vol 10 (8) ◽  
pp. 20035-20068
Author(s):  
H. K. Lappalainen ◽  
S. Sevanto ◽  
M. Dal Maso ◽  
R. Taipale ◽  
M. K. Kajos ◽  
...  

Abstract. Three different models for day-time atmospheric methanol, acetaldehyde, acetone, isoprene and monoterpene concentrations were developed using measurements above a boreal forest stand in Southern Finland in 2006–2007 and tested against an independent dataset from the same forest measured in summer 2008. The models were based on the exponential relationship between air temperature and the concentration of biogenic volatile organic compounds (BVOC). Our first model for BVOC concentrations was a simple exponential function of air temperature (T-model). The T-model could explain 27–66% of the variation of all the compounds, but it failed to catch the extremely high concentration peaks observed in summer. To improve the temperature model we developed two other models. The second model, a Temperature-State of Development- model (T-S model), included two explaining variables: air temperature and the seasonal photosynthetic efficiency. This model performed slightly better compared to the T-model for both datasets and increased the fraction of variation explained to 29–69%, but it still could not explain the high concentration peaks. To explain those we modified the T-S model to include environmental triggers that could increase the concentrations momentarily. The triggers that improved the model most were high photosynthetically active photon flux density (PPDF) compared to the seasonally available radiation and high ozone concentration. The Trigger model described the peak concentrations somewhat better than T or T-S model, thus the level of explanation was improved and was 30–71%. This study shows the importance to include seasonal variations in photosynthetic efficiency when modeling BVOC concentrations and presents the idea of a trigger model for explaining high peak concentrations of BVOCs. Our study suggests that when developing a trigger type modelfurther the model and the triggers should be more compounds-specific.

2015 ◽  
Vol 15 (7) ◽  
pp. 3909-3932 ◽  
Author(s):  
D. Mogensen ◽  
R. Gierens ◽  
J. N. Crowley ◽  
P. Keronen ◽  
S. Smolander ◽  
...  

Abstract. Using the 1-D atmospheric chemistry transport model SOSAA, we have investigated the atmospheric reactivity of a boreal forest ecosystem during the HUMPPA-COPEC-10 campaign (summer 2010, at SMEAR~II in southern Finland). For the very first time, we present vertically resolved model simulations of the NO3 and O3 reactivity (R) together with the modelled and measured reactivity of OH. We find that OH is the most reactive oxidant (R ∼ 3 s-1) followed by NO3 (R ∼ 0.07 s-1) and O3 (R ∼ 2 × 10-5s-1). The missing OH reactivity was found to be large in accordance with measurements (∼ 65%) as would be expected from the chemical subset described in the model. The accounted OH radical sinks were inorganic compounds (∼ 41%, mainly due to reaction with CO), emitted monoterpenes (∼ 14%) and oxidised biogenic volatile organic compounds (∼ 44%). The missing reactivity is expected to be due to unknown biogenic volatile organic compounds and their photoproducts, indicating that the true main sink of OH is not expected to be inorganic compounds. The NO3 radical was found to react mainly with primary emitted monoterpenes (∼ 60%) and inorganic compounds (∼ 37%, including NO2). NO2 is, however, only a temporary sink of NO3 under the conditions of the campaign (with typical temperatures of 20–25 °C) and does not affect the NO3 concentration. We discuss the difference between instantaneous and steady-state reactivity and present the first boreal forest steady-state lifetime of NO3 (113 s). O3 almost exclusively reacts with inorganic compounds (∼ 91%, mainly NO, but also NO2 during night) and less with primary emitted sesquiterpenes (∼ 6%) and monoterpenes (∼ 3%). When considering the concentration of the oxidants investigated, we find that OH is the oxidant that is capable of removing organic compounds at a faster rate during daytime, whereas NO3 can remove organic molecules at a faster rate during night-time. O3 competes with OH and NO3 during a short period of time in the early morning (around 5 a.m. local time) and in the evening (around 7–8 p.m.). As part of this study, we developed a simple empirical parameterisation for conversion of measured spectral irradiance into actinic flux. Further, the meteorological conditions were evaluated using radiosonde observations and ground-based measurements. The overall vertical structure of the boundary layer is discussed, together with validation of the surface energy balance and turbulent fluxes. The sensible heat and momentum fluxes above the canopy were on average overestimated, while the latent heat flux was underestimated.


2019 ◽  
Vol 19 (15) ◽  
pp. 10391-10403 ◽  
Author(s):  
Jonathan Liebmann ◽  
Nicolas Sobanski ◽  
Jan Schuladen ◽  
Einar Karu ◽  
Heidi Hellén ◽  
...  

Abstract. The formation of alkyl nitrates in various oxidation processes taking place throughout the diel cycle can represent an important sink of reactive nitrogen and mechanism for chain termination in atmospheric photo-oxidation cycles. The low-volatility alkyl nitrates (ANs) formed from biogenic volatile organic compounds (BVOCs), especially terpenoids, enhance rates of production and growth of secondary organic aerosol. Measurements of the NO3 reactivity and the mixing ratio of total alkyl nitrates (ΣANs) in the Finnish boreal forest enabled assessment of the relative importance of NO3-, O3- and OH-initiated formation of alkyl nitrates from BVOCs in this environment. The high reactivity of the forest air towards NO3 resulted in reactions of the nitrate radical, with terpenes contributing substantially to formation of ANs not only during the night but also during daytime. Overall, night-time reactions of NO3 accounted for 49 % of the local production rate of ANs, with contributions of 21 %, 18 % and 12 % for NO3, OH and O3 during the day. The lifetimes of the gas-phase ANs formed in this environment were on the order of 2 h due to efficient uptake to aerosol (and dry deposition), resulting in the transfer of reactive nitrogen from anthropogenic sources to the forest ecosystem.


2014 ◽  
Vol 14 (22) ◽  
pp. 30947-31007 ◽  
Author(s):  
D. Mogensen ◽  
R. Gierens ◽  
J. N. Crowley ◽  
P. Keronen ◽  
S. Smolander ◽  
...  

Abstract. Using the 1D atmospheric chemistry–transport model SOSAA, we have investigated the atmospheric reactivity of a boreal forest ecosystem during the HUMPPA-COPEC-10 campaign (summer 2010, at SMEAR II in Southern Finland). For the very first time, we present vertically resolved model simulations of the NO3- and O3-reactivity (R) together with the modelled and measured reactivity of OH. We find that OH is the most reactive oxidant (R~3 s−1) followed by NO3 (R~0.07 s−1) and O3 (R~2 × 10−5 s−1). The missing OH-reactivity was found to be large in accordance with measurements (~65%) as would be expected from the chemical subset described in the model. The accounted OH radical sinks were inorganic compounds (~41%, mainly due to reaction with CO), emitted monoterpenes (~14%) and oxidised biogenic volatile organic compounds (~44%). The missing reactivity is expected to be due to unknown biogenic volatile organic compounds and their photoproducts, indicating that the true main sink of OH is not expected to be inorganic compounds. The NO3 radical was found to react mainly with primary emitted monoterpenes (~60%) and inorganic compounds (~37%, including NO2). NO2 is, however, only a temporary sink of NO3 under the conditions of the campaign and does not affect the NO3 concentration. We discuss the difference between instantaneous and steady state reactivity and present the first boreal forest steady state lifetime of NO3 (113 s). O3 almost exclusively reacts with inorganic compounds (~91%, mainly NO, but also NO2 during night) and less with primary emitted sesquiterpenes (~6%) and monoterpenes (~3%). When considering the concentration of the oxidants investigated, we find that O3 is the oxidant that is capable of removing pollutants fastest. As part of this study, we developed a simple empirical parameterisation for conversion of measured spectral irradiance into actinic flux. Further, the meteorological conditions were evaluated using radiosonde observations and ground based measurements. The overall vertical structure of the boundary layer is discussed, together with validation of the surface energy balance and turbulent fluxes. The sensible heat and momentum fluxes above the canopy were on average overestimated, while the latent heat flux was underestimated.


2003 ◽  
Vol 3 (5) ◽  
pp. 5357-5397
Author(s):  
C. Spirig ◽  
A. Guenther ◽  
J. P. Greenberg ◽  
P. Calanca ◽  
V. Tarvainen

Abstract. Measurements of biogenic volatile organic compounds (VOCs) were performed at Hyytiälä, a Boreal forest site in Southern Finland as part of the project OSOA (origin and formation of secondary organic aerosol) in August 2001. At this site, frequent formation of new particles has been observed and the role of biogenic VOCs in this process is still unclear. Tethered balloons served as platforms to collect VOC samples within the planetary boundary layer at heights up to 1.2 km above ground during daytime. Mean mixed layer concentrations of total monoterpenes varied between 10 and 170 pptv, with α-pinene, limonene and Δ3-carene as major compounds, isoprene was detected at levels of 2–35 pptv. A mixed layer gradient technique and a budget approach are applied to derive surface fluxes representative for areas of tens to hundreds of square kilometres. Effects of spatial heterogeneity in surface emissions are examined with a footprint analysis. Depending on the source area considered, mean afternoon emissions of the sum of terpenes range between 180 and 300 μg m−2 h−1 for the period of 2 to 12 August 2001. Surface fluxes close to Hyytiälä were higher than the regional average, and agree well with mean emissions predicted by a biogenic VOC emission model. Total rates of monoterpene oxidation were calculated with a photochemical model. The rates did not correlate with the occurrence of new particle formation, but the ozone pathway was of more importance on days with particle formation. Condensable vapour production from the oxidation of monoterpenes throughout the mixed layer can only account for a fraction of the increase in aerosol mass observed at the surface.


2004 ◽  
Vol 4 (1) ◽  
pp. 215-229 ◽  
Author(s):  
C. Spirig ◽  
A. Guenther ◽  
J. P. Greenberg ◽  
P. Calanca ◽  
V. Tarvainen

Abstract. Measurements of biogenic volatile organic compounds (VOCs) were performed at Hyytiälä, a Boreal forest site in Southern Finland as part of the OSOA (origin and formation of secondary organic aerosol) project in August 2001. At this site, frequent formation of new particles has been observed and the role of biogenic VOCs in this process is still unclear. Tethered balloons served as platforms to collect VOC samples within the planetary boundary layer at heights up to 1.2 km above ground during daytime. Mean mixed layer concentrations of total monoterpenes varied between 10 and 170 pptv, with a-pinene, limonene and D3-carene as major compounds, isoprene was detected at levels of 2-35 pptv. A mixed layer gradient technique and a budget approach are applied to derive surface fluxes representative for areas of tens to hundreds of square kilometres. Effects of spatial heterogeneity in surface emissions are examined with a footprint analysis. Depending on the source area considered, mean afternoon emissions of the sum of terpenes range between 180 and 300 mg m-2 h-1 for the period of 2-12 August 2001. Surface fluxes close to Hyytiälä were higher than the regional average, and agree well with mean emissions predicted by a biogenic VOC emission model. Total rates of monoterpene oxidation were calculated with a photochemical model. The rates did not correlate with the occurrence of new particle formation, but the ozone pathway was of more importance on days with particle formation. Condensable vapour production from the oxidation of monoterpenes throughout the mixed layer can only account for a fraction of the increase in aerosol mass observed at the surface.


2011 ◽  
Vol 45 (34) ◽  
pp. 6191-6196 ◽  
Author(s):  
Yu Huang ◽  
Steven Sai Hang Ho ◽  
Kin Fai Ho ◽  
Shun Cheng Lee ◽  
Yuan Gao ◽  
...  

2016 ◽  
Vol 9 (5) ◽  
pp. 1959-1976 ◽  
Author(s):  
Chun Zhao ◽  
Maoyi Huang ◽  
Jerome D. Fast ◽  
Larry K. Berg ◽  
Yun Qian ◽  
...  

Abstract. Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.


Sign in / Sign up

Export Citation Format

Share Document