scholarly journals A trajectory analysis of atmospheric transport of black carbon aerosols to Canadian high Arctic in winter and spring (1990–2005)

2010 ◽  
Vol 10 (11) ◽  
pp. 5065-5073 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited on snow have been calculated to have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, seven distinct transport pathways (or clusters) affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work. Transport frequency associated with each pathway is obtained as the fraction of trajectories in that cluster. Based on atmospheric transport frequency and BC surface flux from surrounding regions (i.e. North America, Europe, and former USSR), a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measurements at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Other factors, such as deposition, could also contribute to the variability in BC concentrations but were not considered in this analysis. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that former USSR is the major contributor to the near-surface BC levels at the Canadian high Arctic site with an average contribution of about 67% during the 16-year period, followed by European Union (18%) and North America (15%). In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the inter-annual variation in Eurasian contributions depends mainly on the reduction of emissions, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.

2010 ◽  
Vol 10 (2) ◽  
pp. 2221-2244 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited over snow have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, transport pathways affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work, along with the associated transport frequency. Based on the atmospheric transport frequency and the estimated BC emission intensity from surrounding regions, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measured at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that Eurasia is the major contributor to the near-surface BC levels at the Canadian High Arctic site with an average contribution of over 85% during the 16-year period. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the change in Eurasian contributions depends mainly on the reduction of emission intensity, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.


Polar Biology ◽  
2010 ◽  
Vol 33 (8) ◽  
pp. 1111-1123 ◽  
Author(s):  
John Chételat ◽  
Louise Cloutier ◽  
Marc Amyot

1989 ◽  
Vol 12 ◽  
pp. 152-156 ◽  
Author(s):  
W.M. Sackinger ◽  
M.O. Jeffries ◽  
H. Tippens ◽  
F. Li ◽  
M. Lu

The largest ice island presently known to exist in the Arctic Ocean has a mass of about 700 × 106 tonnes, an area of about 26 km2, and a mean thickness of 42.5 m. Known as Hobson’s Ice Island, this large ice feature has been tracked almost continuously since August 1983 with a succession of Argos buoys. In this paper, two particular ice-island movement episodes near the north-west coast of Axel Heiberg Island are described: 6–16 May 1986 and 14–21 June 1986. Each movement episode is analyzed in terms of the forces acting on the ice island, including wind shear, water drag, water shear, Coriolis force, sea-surface tilt, and pack-ice force. Ice-island movement is generally preceded by an offshore surface wind, and a threshold wind speed of 6 m s°1 appears to be necessary to initiate ice-island motion. An angle of 50° between surface wind and ice-island movement direction is noted during one episode. The pack-ice force, which appears to be the dominant arresting factor of ice-island motion for these two episodes, varies from 100° to 180° to the left of the ice-island velocity direction, depending upon whether the ice island is accelerating or decelerating.


2007 ◽  
Vol 20 (18) ◽  
pp. 4586-4598 ◽  
Author(s):  
Alex S. Gardner ◽  
Martin Sharp

Abstract Variability in July mean surface air temperatures from 1963 to 2003 accounted for 62% of the variance in the regional annual glacier mass balance signal for the Canadian High Arctic. A regime shift to more negative regional glacier mass balance occurred between 1986 and 1987, and is linked to a coincident shift from lower to higher mean July air temperatures. Both the interannual changes and the regime shifts in regional glacier mass balance and July air temperatures are related to variations in the position and strength of the July circumpolar vortex. In years when the July vortex is “strong” and its center is located in the Western Hemisphere, positive mass balance anomalies prevail. In contrast, highly negative mass balance anomalies occur when the July circumpolar vortex is either weak or strong without elongation over the Canadian High Arctic, and its center is located in the Eastern Hemisphere. The occurrence of westerly positioned July vortices has decreased by 40% since 1987. The associated shift to a dominantly easterly positioned July vortex was associated with an increased frequency of tropospheric ridging over the Canadian High Arctic, higher surface air temperatures, and more negative regional glacier mass balance.


2019 ◽  
Vol 13 (4) ◽  
pp. 358-374
Author(s):  
Mark B Salter

Abstract Canada's policies to assert and maintain sovereignty over the High Arctic illuminate both the analytical leverage and blind spots of Foucault's influential Security, Territory, Population (2007) schema for understanding modern governmentality. Governmental logics of security, sovereignty, and biopolitics are contemporaneous and concomitant. The Arctic case demonstrates clearly that the Canadian state messily uses whatever governmental tools are in its grasp to manage the Inuit and claim territorial sovereignty over the High North. But, the case of Canadian High Arctic policies also illustrates the limitations of Foucault's schema. First, the Security, Territory, Population framework has no theorization of the international. In this article I show the simultaneous implementation of Canadian security-, territorial-, and population-oriented policies over the High Arctic. Next, I present the international catalysts that prompt and condition these polices and their specifically settler-colonial tenor. Finally, in line with the Foucauldian imperative to support the “resurrection of subjugated knowledges” (Foucault 2003, 7), I conclude by offering some of the Inuit ways of resisting and reshaping these policies, proving how the Inuit shaped Canadian Arctic sovereignty as much as Canadian Arctic sovereignty policies shaped the Inuit.


2010 ◽  
Vol 10 (21) ◽  
pp. 10489-10502 ◽  
Author(s):  
T. Kuhn ◽  
R. Damoah ◽  
A. Bacak ◽  
J. J. Sloan

Abstract. We report the analysis of measurements made using an aerosol mass spectrometer (AMS; Aerodyne Research Inc.) that was installed in the Polar Environment Atmospheric Research Laboratory (PEARL) in summer 2006. PEARL is located in the Canadian high Arctic at 610 m above sea level on Ellesmere Island (80° N 86° W). PEARL is unique for its remote location in the Arctic and because most of the time it is situated within the free troposphere. It is, therefore, well suited as a receptor site to study the long-range tropospheric transport of pollutants into the Arctic. Some information about the successful year-round operation of an AMS at a high Arctic site such as PEARL will be reported here, together with design considerations for reliable sampling under harsh low-temperature conditions. Computational fluid dynamics calculations were made to ensure that sample integrity was maintained while sampling air at temperatures that average −40 °C in the winter and can be as low as −55 °C. Selected AMS measurements of aerosol mass concentration, size and chemical composition recorded during the months of August, September and October 2006 will be reported. The air temperature was raised to about 20 °C during sampling, but the short residence time in the inlet system (~25 s) ensured that less than 10% of semivolatiles such as ammonium nitrate were lost. During this period, sulfate was, at most times, the predominant aerosol component with on average 0.115 μg m−3 (detection limit 0.003 μg m−3). The second most abundant component was undifferentiated organic aerosol, with on average 0.11 μg m−3 (detection limit 0.04 μg m−3). The nitrate component, which averaged 0.007 μg m−3, was above its detection limit (0.002 μg m−3), whereas the ammonium ion had an apparent average concentration of 0.02 μg m−3, which was approximately equal to its detection limit. A few episodes, having increased mass concentrations and lasting from several hours to several days, are apparent in the data. These were investigated further using a statistical analysis to determine their common characteristics. High correlations among some of the components arriving during the short-term episodes provide evidence for common sources. Lagrangian methods were also used to identify the source regions for some of the episodes. In all cases, these coincided with the arrival of air that had contacted the surface at latitudes below about 60° N. Most of these lower-latitude footprints were on land, but sulfate emissions from shipping in the Atlantic were also detected. The Lagrangian results demonstrate that there is direct transport of polluted air into the high Arctic (up to 80° N) from latitudes down to 40° N on a time scale of 2–3 weeks. The polluted air originates in a wide variety of industrial, resource extraction and petroleum-related activity as well as from large population centres.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3296
Author(s):  
Fang Zhang ◽  
Han Zhang ◽  
Shaofeng Pei ◽  
Liyang Zhan ◽  
Wangwang Ye

Climate change is having a profound impact on Arctic microbiomes and their living environments. However, we have only incomplete knowledge about the seasonal and inter-annual variations observed among these microbes and about their methane regulation mechanisms with respect to glaciers, glacial melting, snow lakes and coastal marine water. This gap in our knowledge limits our understanding of the linkages between climate and environmental change. In the Arctic, there are large reservoirs of methane which are sensitive to temperature changes. If global warming intensifies, larger quantities of methane stored in deep soil and sediments will be released into the atmosphere, causing irreversible effects on the global ecosystem. Methane production is mainly mediated by microorganisms. Although we have some knowledge of microbial community structure, we know less about the methane-correlated microbes in different land types in the Svalbard archipelago, and we do not have a comprehensive grasp of the relationship between them. That is the main reason we have written this paper, in which current knowledge of microorganisms and methane-correlated types in High Arctic Svalbard is described. The problems that need to be addressed in the future are also identified.


Sign in / Sign up

Export Citation Format

Share Document