scholarly journals Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with an AOGCM

2011 ◽  
Vol 11 (7) ◽  
pp. 19769-19850
Author(s):  
D. J. L. Olivié ◽  
D. Cariolle ◽  
H. Teyssèdre ◽  
D. Salas ◽  
A. Voldoire ◽  
...  

Abstract. For the period 1860–2100 (SRES scenario A1B for 2000–2100), the impact of road transport, maritime shipping and aviation on climate is studied using an Atmosphere Ocean General Circulation Model (AOGCM). In addition to carbon dioxide (CO2) emissions from these transport sectors, most of their non-CO2 emissions are also taken into account, i.e., the forcing from ozone, methane, black carbon, organic carbon, sulfate, CFC-12 and HFC-134a from air conditioning systems in cars, and contrails. For the year 2000, the CO2 emissions from all sectors together induce a global annual-mean surface air temperature increase of around 0.1 K. In 2100, the CO2 emissions from road transport induce a global mean warming of 0.3 K, while shipping and aviation each contribute 0.1 K. For road transport, the non-CO2 impact is largest between 2000 and 2050 (of the order of 0.1 K) becoming smaller at the end of the 21st century. The non-CO2 impact from shipping is negative, reaching −0.1 K between 2050 and 2100, while for aviation it is positive and its estimate varies between 0 and 0.15 K in 2100. The largest changes in sea-level from thermal expansion in 2000 are 1.6 mm for the CO2 emissions from road transport, and around −3 mm from the non-CO2 effects of shipping. In 2100, sea-level rises by 18 mm due to the CO2 emissions from road transport and by 4.6 mm due to shipping or aviation CO2 emissions. Non-CO2 changes are of the order of 1 mm for road transport, −6.6 mm for shipping, and the estimate for aviation varies between −1.2 and 4.3 mm. When focusing on the geographical distribution, the non-CO2 impact from road transport and shipping on the surface air temperature is only slightly stronger in northern than in southern mid-latitudes, while the impact from aviation can be a factor of 5 stronger in the northern than in the Southern Hemisphere. Further it is observed that most of the impacts are more pronounced at high latitudes, and that the non-CO2 emissions from aviation strongly impact the NAO index. The impacts on the oceanic meridional overturning circulation and the Niño3.4 index are also quantified.

2012 ◽  
Vol 12 (3) ◽  
pp. 1449-1480 ◽  
Author(s):  
D. J. L. Olivié ◽  
D. Cariolle ◽  
H. Teyssèdre ◽  
D. Salas ◽  
A. Voldoire ◽  
...  

Abstract. For the period 1860–2100 (SRES scenario A1B for 2000–2100), the impact of road transport, maritime shipping and aviation on climate is studied using an Atmosphere Ocean General Circulation Model (AOGCM). In addition to carbon dioxide (CO2) emissions from these transport sectors, most of their non-CO2 emissions are also taken into account, i.e. the forcing from ozone, methane, black carbon, organic carbon, sulfate, CFC-12 and HFC-134a from air conditioning systems in cars, and contrails. For the year 2000, the CO2 emissions from all sectors together induce a global annual-mean surface air temperature increase of around 0.1 K. In 2100, the CO2 emissions from road transport induce a global mean warming of 0.3 K, while shipping and aviation each contribute 0.1 K. For road transport, the non-CO2 impact is largest between 2000 and 2050 (of the order of 0.1 K) becoming smaller at the end of the 21st century. The non-CO2 impact from shipping is negative, reaching −0.1 K between 2050 and 2100, while for aviation it is positive and its estimate varies between 0 and 0.15 K in 2100. The largest changes in sea-level from thermal expansion in 2000 are 1.6 mm for the CO2 emissions from road transport, and around −3 mm from the non-CO2 effects of shipping. In 2100, sea-level rises by 18 mm due to the CO2 emissions from road transport and by 4.6 mm due to shipping or aviation CO2 emissions. Non-CO2 changes are of the order of 1 mm for road transport, −6.6 mm for shipping, and the estimate for aviation varies between −1.2 and 4.3 mm. When focusing on the geographical distribution, the non-CO2 impact from road transport and shipping on the surface air temperature is only slightly stronger in northern than in southern mid-latitudes, while the impact from aviation can be a factor of 5 stronger in the northern than in the southern hemisphere. Further it is observed that most of the impacts are more pronounced at high latitudes, and that the non-CO2 emissions from aviation strongly impact the NAO index. The impacts on the oceanic meridional overturning circulation and the Niño3.4 index are also quantified.


2013 ◽  
Vol 26 (16) ◽  
pp. 5782-5809 ◽  
Author(s):  
Kirsten Zickfeld ◽  
Michael Eby ◽  
Andrew J. Weaver ◽  
Kaitlin Alexander ◽  
Elisabeth Crespin ◽  
...  

Abstract This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.


2021 ◽  
Author(s):  
Zhaomin Ding ◽  
Renguang Wu

AbstractThis study investigates the impact of sea ice and snow changes on surface air temperature (SAT) trends on the multidecadal time scale over the mid- and high-latitudes of Eurasia during boreal autumn, winter and spring based on a 30-member ensemble simulations of the Community Earth System Model (CESM). A dynamical adjustment method is used to remove the internal component of circulation-induced SAT trends. The leading mode of dynamically adjusted SAT trends is featured by same-sign anomalies extending from northern Europe to central Siberia and to the Russian Far East, respectively, during boreal spring and autumn, and confined to western Siberia during winter. The internally generated component of sea ice concentration trends over the Barents-Kara Seas contributes to the differences in the thermodynamic component of internal SAT trends across the ensemble over adjacent northern Siberia during all the three seasons. The sea ice effect is largest in autumn and smallest in winter. Eurasian snow changes contribute to the spread in dynamically adjusted SAT trends as well around the periphery of snow covered region by modulating surface heat flux changes. The snow effect is identified over northeast Europe-western Siberia in autumn, north of the Caspian Sea in winter, and over eastern Europe-northern Siberia in spring. The effects of sea ice and snow on the SAT trends are realized mainly by modulating upward shortwave and longwave radiation fluxes.


Author(s):  
Vidya Anderson ◽  
William A. Gough

AbstractThe application of green infrastructure presents an opportunity to mitigate rising temperatures using a multi-faceted ecosystems-based approach. A controlled field study in Toronto, Ontario, Canada, evaluates the impact of nature-based solutions on near surface air temperature regulation focusing on different applications of green infrastructure. A field campaign was undertaken over the course of two summers to measure the impact of green roofs, green walls, urban vegetation and forestry systems, and urban agriculture systems on near surface air temperature. This study demonstrates that multiple types of green infrastructure applications are beneficial in regulating near surface air temperature and are not limited to specific treatments. Widespread usage of green infrastructure could be a viable strategy to cool cities and improve urban climate.


2005 ◽  
Vol 18 (16) ◽  
pp. 3217-3228 ◽  
Author(s):  
D. W. Shin ◽  
S. Cocke ◽  
T. E. LaRow ◽  
James J. O’Brien

Abstract The current Florida State University (FSU) climate model is upgraded by coupling the National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) as its land component in order to make a better simulation of surface air temperature and precipitation on the seasonal time scale, which is important for crop model application. Climatological and seasonal simulations with the FSU climate model coupled to the CLM2 (hereafter FSUCLM) are compared to those of the control (the FSU model with the original simple land surface treatment). The current version of the FSU model is known to have a cold bias in the temperature field and a wet bias in precipitation. The implementation of FSUCLM has reduced or eliminated this bias due to reduced latent heat flux and increased sensible heat flux. The role of the land model in seasonal simulations is shown to be more important during summertime than wintertime. An additional experiment that assimilates atmospheric forcings produces improved land-model initial conditions, which in turn reduces the biases further. The impact of various deep convective parameterizations is examined as well to further assess model performance. The land scheme plays a more important role than the convective scheme in simulations of surface air temperature. However, each convective scheme shows its own advantage over different geophysical locations in precipitation simulations.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1543
Author(s):  
Reinhardt Pinzón ◽  
Noriko N. Ishizaki ◽  
Hidetaka Sasaki ◽  
Tosiyuki Nakaegawa

To simulate the current climate, a 20-year integration of a non-hydrostatic regional climate model (NHRCM) with grid spacing of 5 and 2 km (NHRCM05 and NHRCM02, respectively) was nested within the AGCM. The three models did a similarly good job of simulating surface air temperature, and the spatial horizontal resolution did not affect these statistics. NHRCM02 did a good job of reproducing seasonal variations in surface air temperature. NHRCM05 overestimated annual mean precipitation in the western part of Panama and eastern part of the Pacific Ocean. NHRCM05 is responsible for this overestimation because it is not seen in MRI-AGCM. NHRCM02 simulated annual mean precipitation better than NHRCM05, probably due to a convection-permitting model without a convection scheme, such as the Kain and Fritsch scheme. Therefore, the finer horizontal resolution of NHRCM02 did a better job of replicating the current climatological mean geographical distributions and seasonal changes of surface air temperature and precipitation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Abdulhakim Bawadekji ◽  
Kareem Tonbol ◽  
Nejib Ghazouani ◽  
Nidhal Becheikh ◽  
Mohamed Shaltout

AbstractRecent and future climate diagrams (surface air temperature, surface relative humidity, surface wind, and mean sea level pressure) for the Saudi Arabian Red Sea Coast are analysed based on hourly observations (2016–2020) and hourly ERA5 data (1979–2020) with daily GFDL mini-ensemble means (2006–2100). Moreover, GFDL mini-ensemble means are calculated based on the results of three GFDL simulations (GFDL-CM3, GFDL-ESM2M, and GFDL-ESM2G). Observation data are employed to describe the short-term current weather variability. However, ERA5 data are considered to study the long-term current weather variability after bias removal via a comparison to observations. Finally, a bias correction statistical model was developed by matching the cumulative distribution functions (CDFs) of corrected ERA5 and mini-ensemble mean data over 15 years (2006–2020). The obtained local statistic were used to statically downscale GFDL mini-ensemble means to study the future uncertainty in the atmospheric parameters studied. There occurred significant spatial variability across the study area, especially regarding the surface air temperature and relative humidity, based on monthly analysis of both observation and ERA5 data. Moreover, the results indicated that the ERA5 data suitably describe Tabuk, Jeddah and Jizan weather conditions with a marked spatial variability. The best performance of ERA5 surface air temperature and relative humidity (surface wind speed and sea level pressure) data was detected in Tabuk (Jeddah). These data for the Saudi Arabian Red Sea coast, 1979–2020, exhibit significant positive trends of the surface air temperature and surface wind speed and significant negative trends of the relative humidity and sea level pressure. The GFDL mini-ensemble mean projection result, up to 2100, contains a significant bias in the studied weather parameters. This is partly attributed to the coarse GFDL resolution (2° × 2°). After bias removal, the statistically downscaled simulations based on the GFDL mini-ensemble mean indicate that the climate in the study area will experience significant changes with a large range of uncertainty according to the considered scenario and regional variations.


2016 ◽  
Vol 29 (2) ◽  
pp. 689-704 ◽  
Author(s):  
Marius Årthun ◽  
Tor Eldevik

Abstract A potential for climate predictability is rooted in anomalous ocean heat transport and its consequent influence on the atmosphere above. Here the propagation, drivers, and atmospheric impact of heat anomalies within the northernmost limb of the Atlantic meridional overturning circulation are assessed using a multicentury climate model simulation. Consistent with observation-based inferences, simulated heat anomalies propagate from the eastern subpolar North Atlantic into and through the Nordic seas. The dominant time scale of associated climate variability in the northern seas is 14 years, including that of observed sea surface temperature and modeled ocean heat content, air–sea heat flux, and surface air temperature. A heat budget analysis reveals that simulated ocean heat content anomalies are driven by poleward ocean heat transport, primarily related to variable volume transport. The ocean’s influence on the atmosphere, and hence regional climate, is manifested in the model by anomalous ocean heat convergence driving subsequent changes in surface heat fluxes and surface air temperature. The documented northward propagation of thermohaline anomalies in the northern seas and their consequent imprint on the regional atmosphere—including the existence of a common decadal time scale of variability—detail a key aspect of eventual climate predictability.


Sign in / Sign up

Export Citation Format

Share Document