scholarly journals Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

2011 ◽  
Vol 11 (9) ◽  
pp. 26173-26243 ◽  
Author(s):  
S. Choi ◽  
Y. Wang ◽  
R. J. Salawitch ◽  
T. Canty ◽  
J. Joiner ◽  
...  

Abstract. We derive estimates of tropospheric BrO column amounts during two Arctic field campaigns in 2008 using information from the satellite UV nadir sensors Ozone Monitoring Instrument (OMI) and the second Global Ozone Monitoring Experiment (GOME-2) as well as estimates of stratospheric BrO columns from a model simulation. The sensitivity of the satellite-derived tropospheric BrO columns to various parameters is investigated using a radiative transfer model. We conduct a comprehensive analysis of satellite-derived tropospheric BrO columns including a detailed comparison with aircraft in-situ observations of BrO and related species obtained during the field campaigns. In contrast to prior expectation, tropospheric BrO, when present, existed over a broad range of altitudes. Our results show reasonable agreement between tropospheric BrO columns derived from the satellite observations and columns found using aircraft in-situ BrO. After accounting for the stratospheric contribution to total BrO column, several events of rapid BrO activation due to surface processes in the Arctic are apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low pressure systems, strong surface winds, and high planetary boundary layer heights are associated with the observed tropospheric BrO activation events.

2008 ◽  
Vol 8 (5) ◽  
pp. 17467-17493 ◽  
Author(s):  
S. Kazadzis ◽  
A. Bais ◽  
A. Arola ◽  
N. Krotkov ◽  
N. Kouremeti ◽  
...  

Abstract. We have compared spectral ultraviolet overpass irradiances from the Ozone Monitoring Instruments (OMI) against ground-based Brewer measurements at Thessaloniki, Greece from September 2004 to December 2007. It is demonstrated that OMI overestimates UV irradiances by 30%, 17% and 13% for 305 nm, 324 nm, and 380 nm respectively and 20% for erythemally weighted irradiance. The bias between OMI and Brewer increases with increasing aerosol absorption optical thickness. We present methodologies that can be applied for correcting this bias based on experimental results derived from the comparison period and also theoretical approaches using radiative transfer model calculations. All correction approaches minimize the bias and the standard deviation of the ratio OMI versus Brewer ratio. According to the results, the best correction approach suggests that the OMI UV product has to be multiplied by a correction factor CA(λ) are in the order of 0.8, 0.88 and 0.9 for 305 nm, 324 nm and 380 nm respectively. Limitations and possibilities for applying such methodologies in a global scale are also discussed.


2014 ◽  
Vol 53 (4) ◽  
pp. 1046-1058 ◽  
Author(s):  
Yong-Keun Lee ◽  
Jason A. Otkin ◽  
Thomas J. Greenwald

AbstractSynthetic infrared brightness temperatures (BTs) derived from a high-resolution Weather Research and Forecasting (WRF) model simulation over the contiguous United States are compared with Moderate Resolution Imaging Spectroradiometer (MODIS) observations to assess the accuracy of the model-simulated cloud field. A sophisticated forward radiative transfer model (RTM) is used to compute the synthetic MODIS observations. A detailed comparison of synthetic and real MODIS 11-μm BTs revealed that the model simulation realistically depicts the spatial characteristics of the observed cloud features. Brightness temperature differences (BTDs) computed for 8.5–11 and 11–12 μm indicate that the combined numerical model–RTM system realistically treats the radiative properties associated with optically thin cirrus clouds. For instance, much larger 11–12-μm BTDs occurred within thin clouds surrounding optically thicker, mesoscale cloud features. Although the simulated and observed BTD probability distributions for optically thin cirrus clouds had a similar range of positive values, the synthetic 11-μm BTs were much colder than observed. Previous studies have shown that MODIS cloud optical thickness values tend to be too large for thin cirrus clouds, which contributed to the apparent cold BT bias in the simulated thin cirrus clouds. Errors are substantially reduced after accounting for the observed optical thickness bias, which indicates that the thin cirrus clouds are realistically depicted during the model simulation.


2009 ◽  
Vol 9 (2) ◽  
pp. 585-594 ◽  
Author(s):  
S. Kazadzis ◽  
A. Bais ◽  
A. Arola ◽  
N. Krotkov ◽  
N. Kouremeti ◽  
...  

Abstract. We have compared spectral ultraviolet overpass irradiances from the Ozone Monitoring Instruments (OMI) against ground-based Brewer measurements at Thessaloniki, Greece from September 2004 to December 2007. It is demonstrated that OMI overestimates UV irradiances by 30%, 17% and 13% for 305 nm, 324 nm, and 380 nm respectively and 20% for erythemally weighted irradiance. The bias between OMI and Brewer increases with increasing aerosol absorption optical thickness. We present methodologies that can be applied for correcting this bias based on experimental results derived from the comparison period and also theoretical approaches using radiative transfer model calculations. All correction approaches minimize the bias and the standard deviation of the ratio OMI versus Brewer ratio. According to the results, the best correction approach suggests that the OMI UV product has to be multiplied by a correction factor CA(λ) of the order of 0.8, 0.88 and 0.9 for 305 nm, 324 nm and 380 nm respectively. Limitations and possibilities for applying such methodologies in a global scale are also discussed.


2017 ◽  
Vol 10 (1) ◽  
pp. 333-349 ◽  
Author(s):  
Alexander Vasilkov ◽  
Wenhan Qin ◽  
Nickolay Krotkov ◽  
Lok Lamsal ◽  
Robert Spurr ◽  
...  

Abstract. Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun–sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox–Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.


2016 ◽  
Author(s):  
A. Vasilkov ◽  
W. Qin ◽  
N. Krotkov ◽  
L. Lamsal ◽  
R. Spurr ◽  
...  

Abstract. Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian-equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the MODerateresolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that the use of high-resolution geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas.


2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1532 ◽  
Author(s):  
Guido Masiello ◽  
Carmine Serio ◽  
Sara Venafra ◽  
Laurent Poutier ◽  
Frank-M. Göttsche

Timely processing of observations from multi-spectral imagers, such as SEVIRI (Spinning Enhanced Visible and Infrared Imager), largely depends on fast radiative transfer calculations. This paper mostly concerns the development and implementation of a new forward model for SEVIRI to be applied to real time processing of infrared radiances. The new radiative transfer model improves computational time by a factor of ≈7 compared to the previous versions and makes it possible to process SEVIRI data at nearly real time. The new forward model has been applied for the retrieval of surface parameters. Although the scheme can be applied for the simultaneous retrieval of temperature and emissivity, the paper mostly focuses on emissivity. The inverse scheme relies on a Kalman filter approach, which allows us to exploit a sequential processing of SEVIRI observations. Based on the new forward model, the paper also presents a validation retrieval performed with in situ observations acquired during a field experiment carried out in 2017 at Gobabeb (Namib desert) validation station. Furthermore, a comparison with IASI (Infrared Atmospheric Sounder Interferometer) emissivity retrievals has been performed as well. It has been found that the retrieved emissivities are in good agreement with each other and with in situ observations, i.e., average differences are generally well below 0.01.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
J. Laliberté ◽  
S. Bélanger ◽  
M. Babin

The Arctic atmosphere–surface system transmits visible light from the Sun to the ocean, determining the annual cycle of light available to microalgae. This light is referred to as photosynthetically available radiation (PAR). A known consequence of Arctic warming is the change at the atmosphere–ocean interface (longer ice-free season, younger ice), implying an increase in the percentage of PAR being transferred to the water. However, much less is known about the recent changes in how much PAR is being transferred by the overlaying atmosphere. We studied the transfer of PAR through the atmosphere between May 21 and July 23 at a pan-Arctic scale for the period ranging from 2000 to 2016. By combining a large data set of atmospheric and surface conditions into a radiative transfer model, we computed the percentage of PAR transferred to the surface. We found that typical Arctic atmospheres convey between 60% and 70% of the incident PAR received from the Sun, meaning the Arctic atmosphere typically transmits more light than most sea ice surfaces, with the exception of mature melt ponds. We also found that the transfer of PAR through the atmosphere decreased at a rate of 2.3% per decade over the studied period, due to the increase in cloudiness and the weaker radiative interaction between the atmosphere and the surface. Further investigation is required to address how, in the warmer Arctic climate, this negative trend would compensate for the increased surface transmittance and its consequences on marine productivity.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


Sign in / Sign up

Export Citation Format

Share Document