scholarly journals Regional radiative impact of volcanic aerosol from the 2009 eruption of Redoubt volcano

2011 ◽  
Vol 11 (9) ◽  
pp. 26691-26740 ◽  
Author(s):  
C. L. Young ◽  
I. N. Sokolik ◽  
J. Dufek

Abstract. High northern latitude eruptions have the potential to release volcanic aerosol into the Arctic environment, perturbing the Arctic's climate system. In this study, we present assessments of shortwave (SW), longwave (LW) and net direct aerosol radiative forcings (DARFs) and atmospheric heating/cooling rates caused by volcanic aerosol from the 2009 eruption of Redoubt Volcano by performing radiative transfer modeling constrained by NASA A-Train satellite data. The Ozone Monitoring Instrument (OMI), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for volcanic ash were used to characterize aerosol across the region. A representative range of aerosol optical depths (AODs) at 550 nm were obtained from MODIS, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) was used to determine the altitude and thickness of the plumes. The optical properties of volcanic aerosol were calculated using a compositionally resolved microphysical model developed for both ash and sulfates. Two compositions of volcanic aerosol were considered in order to examine a fresh, ash rich plume and an older, ash poor plume. Optical models were incorporated into a modified version of the Santa Barbara Disort Atmospheric Radiative Transfer (SBDART) model. Radiative transfer calculations were made for a range of surface albedos and solar zenith angles (SZA) representative of the region. We find that the total DARF caused by a fresh, thin plume (~2.5–7 km) at an AOD (550 nm) range of 0.16–0.58 and SZA = 55° is –46 W m−2AOD−1 at the top of the atmosphere (TOA), 110 W m−2AOD−1 in the aerosol layer, and – 150 W m−2AOD−1 at the surface over seawater. However, the total DARF for the same plume over snow and at the same SZA at TOA, in the layer, and at the surface is 170, 170, and −2 W m−2AOD−1, respectively. We also see that the total DARF when SZA = 75° for the same layer over snow is 35 W m−2AOD−1 at TOA, 64 W m−2AOD−1 in the layer, and 11 W m−2AOD−1 at the surface. These results indicate that environmental conditions, such as surface albedo and SZA, control the sign of the radiative forcing at TOA and at the surface and the magnitude of the forcing in the aerosol layer. An older plume over snow at SZA = 55° would have total DARFs of 25, 31, and −5 W m−2AOD−1 at TOA, in the layer, and at the surface, respectively. Our results demonstrate that plume aging can alter the magnitude of the radiative forcing. We also compare results for the thin plume to those for a thick plume (~3–20 km) with an AOD (550 nm) range of 1 to 3. The fresh, thin plume with AOD = 0.58, over seawater, and SZA = 55° will heat the atmosphere in the SW by ~2.5 K day−1 and cool the atmosphere in the LW by ~0.3 Kday−1. The fresh, thick plume with AOD = 3 under the same environmental conditions will produce SW heating in the atmosphere by ~31 Kday−1 and atmospheric LW cooling of ~6.7 K day−1. These calculations convey the importance of vertical plume structure in determining the magnitudes of the radiative effects. We compare our assessments with those reported for other aerosols typical to the Arctic environment (smoke from wildfires, Arctic haze, and dust) to demonstrate the importance of volcanic aerosols.

2012 ◽  
Vol 12 (8) ◽  
pp. 3699-3715 ◽  
Author(s):  
C. L. Young ◽  
I. N. Sokolik ◽  
J. Dufek

Abstract. High northern latitude eruptions have the potential to release volcanic aerosol into the Arctic environment, perturbing the Arctic's climate system. We present assessments of shortwave (SW), longwave (LW) and net direct aerosol radiative forcing efficiencies and atmospheric heating/cooling rates caused by volcanic aerosol from the 2009 eruption of Mt. Redoubt by performing radiative transfer modeling constrained by NASA A-Train satellite data. The optical properties of volcanic aerosol were calculated by introducing a compositionally resolved microphysical model developed for both ash and sulfates. Two compositions of volcanic aerosol were considered in order to examine a fresh, ash rich plume and an older, ash poor plume. Optical models were incorporated into a modified version of the SBDART radiative transfer model. Our results indicate that environmental conditions, such as surface albedo and solar zenith angle (SZA), can influence the sign and the magnitude of the radiative forcing at the top of the atmosphere (TOA) and at the surface and the magnitude of the forcing in the aerosol layer. We find that a fresh, thin plume (~2.5–7 km) at an AOD (550 nm) range of 0.18–0.58 and SZA = 55° over snow cools the surface and warms the TOA, but the opposite effect is seen for TOA by the same layer over ocean. The layer over snow also warms by 64 W m−2AOD−1 more than the same plume over seawater. The layer over snow at SZA = 75° warms the TOA 96 W m−2AOD−1 less than it would at SZA = 55° over snow, and there is instead warming at the surface. We also find that plume aging can alter the magnitude of the radiative forcing. An aged plume over snow at SZA = 55° would warm the TOA and layer by 146 and 143 W m−2AOD−1 less than the fresh plume, while the aging plume cools the surface 3 W m−2AOD−1 more. Comparing results for the thin plume to those for a thick plume (~3–20 km), we find that the fresh, thick plume with AOD(550 nm) = 3, over seawater, and SZA = 55° heats the upper part of the plume in the SW ~28 K day−1 more and cools in the LW by ~6.3 K day−1 more than a fresh, thin plume under the same environmental conditions. We compare our assessments with those reported for other aerosols typical to the Arctic environment (smoke from wildfires, Arctic haze, and dust) to demonstrate the importance of volcanic aerosols.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


2021 ◽  
Author(s):  
Jie Gao ◽  
Jonathon Wright

<p>The Asian Tropopause Aerosol Layer (ATAL) has emerged over recent decades to play an increasingly prominent role in the upper troposphere and lower stratosphere above the Asian monsoon region. Although the effects of the ATAL on the surface and top-of-atmosphere radiation budget have been examined by several studies, the processes and effects by which the ATAL alters radiative transfer within the tropopause layer have been much less discussed. We have used a conditional composite approach to investigate aerosol mixing ratios and their impacts on radiative heating rates in the Asian monsoon tropopause layer in MERRA-2. We have then subsampled in time based on known volcanic eruptions and the evolution of emission and data assimilation inputs to the MERRA-2 aerosol analysis to isolate the ATAL contribution and compare it to radiative heating signatures in the monsoon anticyclone region after volcanic eruptions. The results indicate that the ATAL impact on radiative heating rates in this region is on the order of 0.1 K/day, similar to that associated with ozone variability in MERRA-2 but weaker than cloud radiative effects at these altitudes. We have validated these results and tested their sensitivity to variations in the vertical structure and composition of ATAL aerosols using offline radiative transfer simulations. The idealized simulations produce similar but slightly stronger responses of radiative heating rates to the ATAL and are in good agreement with previous estimates of the top-of-atmosphere radiative forcing. Although the ATAL perturbations inferred from MERRA-2 are only about 10% of mean heating rates at these levels, their spatial distribution suggests potential implications for both isentropic and diabatic transport within the monsoon anticyclone, which should be examined in future work. Our results are limited by uncertainties in the composition and spatiotemporal variability of the ATAL, and reflect only the conditions in this layer as represented by MERRA-2. Targeted observations and model simulations are needed to adequately constrain the uncertainties, particularly with respect to the relative proportions and contributions of nitrate aerosols, which are not included in the MERRA-2 aerosol analysis.</p>


2020 ◽  
Vol 20 (13) ◽  
pp. 8139-8156
Author(s):  
Tobias Donth ◽  
Evelyn Jäkel ◽  
André Ehrlich ◽  
Bernd Heinold ◽  
Jacob Schacht ◽  
...  

Abstract. The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55∘) and a representative BC particle mass concentration of 5 ng g−1 in the surface snow layer, a positive daily mean solar radiative forcing of +0.2 W m−2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about −0.05 W m−2, even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d−1) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d−1). Also, it was shown that the cooling by atmospheric BC of the near-surface air and the warming effect by BC embedded in snow are reduced in the presence of clouds.


2020 ◽  
Author(s):  
Corinna Kloss ◽  
Pasquale Sellitto ◽  
Bernard Legras ◽  
Jean-Paul Vernier ◽  
Fabrice Jégou ◽  
...  

<p>Using a combination of satellite, ground-based and in-situ observations, and radiative transfer modelling, we quantify the impact of the most recent moderate volcanic eruptions (Ambae, Vanuatu in July 2018; Raikoke, Russia and Ulawun, New Guinea in June 2019) on the global stratospheric aerosol layer and climate.</p><p>For the Ambae volcano (15°S and 167°E), we use the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Ozone Mapping Profiler Suite (OMPS), the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Himawari geostationary satellite observations of the aerosol plume evolution following the Ambae eruption of July 2018. It is shown that the aerosol plume of the main eruption at Ambae in July 2018 was distributed throughout the global stratosphere within the global large-scale circulation (Brewer-Dobson circulation, BDC), to both hemispheres. Ground-based LiDAR observations in Gadanki, India, as well as in-situ Printed Optical Particle Spectrometer (POPS) measurements acquired during the BATAL campaign confirm a widespread perturbation of the stratospheric aerosol layer due to this eruption. Using the UVSPEC radiative transfer model, we also estimate the radiative forcing of this global stratospheric aerosol perturbation. The climate impact is shown to be comparable to that of the well-known and studied recent moderate stratospheric eruptions from Kasatochi (USA, 2008), Sarychev (Russia, 2009) and Nabro (Eritrea, 2011). Top of the atmosphere radiative forcing values between -0.45 and -0.60 W/m<sup>2</sup>, for the Ambae eruption of July 2018, are found.</p><p>In a similar manner the dispersion of the aerosol plume of the Raikoke (48°N and 153°E) and Ulawun (5°S and 151°E) eruptions of June 2019 is analyzed. As both of those eruptions had a stratospheric impact and happened almost simultaneously, it is challenging to completely distinguish both events. Even though the eruptions occurred very recently, first results show that the aerosol plume of the Raikoke eruption resulted in an increase in aerosol extinction values, double as high as compared to that of the Ambae eruption. However, as the eruption occurred on higher latitudes, the main bulk of Raikoke aerosols was transported towards the northern higher latitude’s in the stratosphere within the BDC, as revealed by OMPS, SAGE III and a new detection algorithm for SO<sub>2</sub> and sulfate aerosol using IASI (Infrared Atmospheric Sounder Interferometer). Even though the Raikoke eruption had a larger impact on the stratospheric aerosol layer, both events (the eruptions at Raikoke and Ambae) have to be considered in stratospheric aerosol budget and climate studies.</p>


2009 ◽  
Vol 9 (2) ◽  
pp. 8541-8560 ◽  
Author(s):  
T. Corti ◽  
T. Peter

Abstract. We present a simple model for the longwave and shortwave cloud radiative forcing based on the evaluation of extensive radiative transfer calculations. The simplicity of the model equations fosters the understanding on how clouds affect the Earth's energy balance. In comparison with results from a comprehensive radiative transfer model, the accuracy of our parameterization is typically better than 20%. We demonstrate the usefulness of our model using the example of tropical cirrus clouds. We conclude that possible applications for the model include the fast estimate of cloud radiative forcing, the evaluation of the sensitivity to changes in environmental conditions, and as a tool in education.


2021 ◽  
Vol 21 (1) ◽  
pp. 269-288
Author(s):  
Jiecan Cui ◽  
Tenglong Shi ◽  
Yue Zhou ◽  
Dongyou Wu ◽  
Xin Wang ◽  
...  

Abstract. Snow is the most reflective natural surface on Earth and consequently plays an important role in Earth's climate. Light-absorbing particles (LAPs) deposited on the snow surface can effectively decrease snow albedo, resulting in positive radiative forcing. In this study, we used remote-sensing data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and the Snow, Ice, and Aerosol Radiative (SNICAR) model to quantify the reduction in snow albedo due to LAPs before validating and correcting the data against in situ observations. We then incorporated these corrected albedo-reduction data in the Santa Barbara DISORT (Discrete Ordinate Radiative Transfer) Atmospheric Radiative Transfer (SBDART) model to estimate Northern Hemisphere radiative forcing except for midlatitude mountains in December–May for the period 2003–2018. Our analysis reveals an average corrected reduction in snow albedo (ΔαMODIS,correctedLAPs) of ∼ 0.021 under all-sky conditions, with daily radiative forcing (RFMODIS,dailyLAPs) values of ∼ 2.9 W m−2, over land areas with complete or near-complete snow cover and with little or no vegetation above the snow in the Northern Hemisphere. We also observed significant spatial variations in ΔαMODIS,correctedLAPs and RFMODIS,dailyLAPs, with the lowest respective values (∼ 0.016 and ∼ 2.6 W m−2) occurring in the Arctic and the highest (∼ 0.11 and ∼ 12 W m−2) in northeastern China. From MODIS retrievals, we determined that the LAP content of snow accounts for 84 % and 70 % of the spatial variability in albedo reduction and radiative forcing, respectively. We also compared retrieved radiative forcing values with those of earlier studies, including local-scale observations, remote-sensing retrievals, and model-based estimates. Ultimately, estimates of radiative forcing based on satellite-retrieved data are shown to represent true conditions on both regional and global scales.


2007 ◽  
Vol 7 (22) ◽  
pp. 5899-5915 ◽  
Author(s):  
C. Lund Myhre ◽  
C. Toledano ◽  
G. Myhre ◽  
K. Stebel ◽  
K. E. Yttri ◽  
...  

Abstract. In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ny-Ålesund (78°54' N, 11°53' E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. The observations show that the maximum AOD was from 2–3 May at all sites and varies from 0.52 to 0.87, and the corresponding Ångstrøm exponent was relatively large. Lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Ålesund show that the aerosol layer was below 3 km at all sites the height is decreasing from the source region and into the Arctic. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. The single scattering albedo at Svalbard is provided for two sites; Ny-Ålesund and Hornsund. Importantly the calculated single scattering albedo based on the aerosol chemical composition and size distribution from Ny-Ålesund and the AERONET measurements at Hornsund are consistent. We have found strong agreement between the satellite daily MODIS AOD and the ground-based AOD observations. This agreement is crucial for accurate radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation. During this specific pollution event the forcing reached values as low as −35 W m−2 in the region. For comparison, the direct forcing of a corresponding aerosol layer with a typical AOD of 0.05 for the season is around −5 W m−2.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 271 ◽  
Author(s):  
Erica Alston ◽  
Irina Sokolik

Aerosols and their radiative properties play an integral part in understanding Earth’s climate. It is becoming increasingly common to examine aerosol’s radiative impacts on a regional scale. The primary goal of this research is to explore the impacts of regional aerosol’s forcing at the surface and top-of-atmosphere (TOA) in the south-eastern U.S. by using a 1-D radiative transfer model. By using test cases that are representative of conditions common to this region, an estimate of aerosol forcing can be compared to other results. Speciation data and aerosol layer analysis provide the basis for the modeling. Results indicate that the region experiences TOA cooling year-round, where the winter has TOA forcings between −2.8 and −5 W/m2, and the summer has forcings between −5 and −15 W/m2 for typical atmospheric conditions. Surface level forcing efficiencies are greater than those estimated for the TOA for all cases considered i.e., urban and non-urban background conditions. One potential implication of this research is that regional aerosol mixtures have effects that are not well captured in global climate model estimates, which has implications for a warming climate where all radiative inputs are not well characterized, thus increasing the ambiguity in determining regional climate impacts.


2015 ◽  
Vol 15 (6) ◽  
pp. 7933-7975 ◽  
Author(s):  
S. S. Park ◽  
J. Kim ◽  
H. Lee ◽  
O. Torres ◽  
K.-M. Lee ◽  
...  

Abstract. The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.


Sign in / Sign up

Export Citation Format

Share Document