scholarly journals Aerosol light-scattering enhancement due to water uptake during the TCAP campaign

2014 ◽  
Vol 14 (13) ◽  
pp. 7031-7043 ◽  
Author(s):  
G. Titos ◽  
A. Jefferson ◽  
P. J. Sheridan ◽  
E. Andrews ◽  
H. Lyamani ◽  
...  

Abstract. Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.

2014 ◽  
Vol 14 (3) ◽  
pp. 3361-3393 ◽  
Author(s):  
G. Titos ◽  
A. Jefferson ◽  
P. J. Sheridan ◽  
E. Andrews ◽  
H. Lyamani ◽  
...  

Abstract. Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility in the framework of the Two-Column Aerosol Project (TCAP) deployed at Cape Cod, Massachusetts, for a~one year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0–180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically-influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically-influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air-masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.


2009 ◽  
Vol 9 (3) ◽  
pp. 11413-11440
Author(s):  
X. He ◽  
C. Li ◽  
A. K. H. Lau ◽  
Z. Deng ◽  
J. Mao ◽  
...  

Abstract. In order to quantify the aerosol impact on climate, a range of aerosol parameters is required. In this paper, two-year ground-based observations of aerosol optical properties are conducted at an urban site in Beijing of China. Aerosol absorption coefficient (σa) and scattering coefficient (σs), as well as single scattering albedo (ω) are analyzed for characterizing Beijing urban aerosol. Two-year averages (and standard deviations) for σa, σs and ω are 56±49 Mm−1, 288±281 Mm−1 and 0.80±0.09, respectively. Meanwhile, there is a distinct diurnal variation for σa, with its minimum occurs about 14:00 to 15:00 and maximum in the evening. While, σs peaks in late morning and the minimum occurs in the evening. σs in summer is higher than that in winter. ω in summer is higher than that in winter except before 07:00 a.m. and it peaks in the early afternoon. Both σa and σs show strong dependence on local wind in four seasons. When the wind blows from north with low speed (0–4 m/s), both σa and σs are high, while very low with wind speed higher than 4 m/s. When the wind blows from south with low speed (0–4 m/s), σa and σs are intermediate. ω also shows wind dependence to some extent though not as strong as σa and σs.


2021 ◽  
Author(s):  
Maria Ángeles Burgos Simón ◽  
Elisabeth Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

<p>The particle hygroscopic growth impacts the optical properties of aerosols and, in turn, affects the aerosol-radiation interaction and calculation of the Earth’s radiative balance. The dependence of particle light scattering on relative humidity (RH) can be described by the scattering enhancement factor f(RH), defined as the ratio between the particle light scattering coefficient at a given RH divided by its dry value.</p><p>The first effort of the AeroCom Phase III – INSITU experiment was to develop an observational dataset of scattering enhancement values at 26 sites to study the uptake of water by atmospheric aerosols, and evaluate f(RH) globally (Burgos et al., 2019). Model outputs from 10 Earth System Models (CAM, CAM-ATRAS, CAM-Oslo, GEOS-Chem, GEOS-GOCART, MERRAero, TM5, OsloCTM3, IFS-AER, and ECMWF) were then evaluated against this in-situ dataset. Building on these results, we investigate f(RH) in the context of other aerosol optical and chemical properties, making use of the same 10 Earth System Models (ESMs) and in-situ measurements as in Burgos et al. (2020) and Titos et al. (2021).</p><p>Given the difficulties of deploying and maintaining instrumentation for long-term, accurate and comprehensive f(RH) observations, it is desirable to find an observational proxy for f(RH). This observation-based proxy would also need to be reproduced in modelling space. Our aim here is to evaluate how ESMs currently represent the relationship between f(RH), scattering Ångström exponent (SAE), and single scattering albedo (SSA). This work helps to identify current challenges in modelling water-uptake by aerosols and their impact on aerosol optical properties within Earth system models.</p><p>We start by analyzing the behavior of SSA with RH, finding the expected increase with RH for all site types and models. Then, we analyze the three variables together (f(RH)-SSA-SAE relationship). Results show that hygroscopic particles tend to be bigger and scatter more than non-hygroscopic small particles, though variability within models is noticeable. This relationship can be further studied by relating SAE to model chemistry, by selecting those grid points dominated by a single chemical component (mass mixing ratios > 90%). Finally, we analyze model performance at three specific sites representing different aerosol types: Arctic, marine and rural. At these sites, the model data can be exactly temporally and spatially collocated with the observations, which should help to identify the models which exhibit better agreement with measurements and for which aerosol type.</p><p> </p><p>Burgos, M.A. et al.: A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 6, 157. https://doi.org/10.1038/s41597-019-0158-7, 2019.</p><p>Burgos, M.A. et al.: A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, 2020.</p><p>Titos, G. et al.: A global study of hygroscopicity-driven light scattering enhancement in the context of other in-situ aerosol optical properties, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1250, in review, 2020.</p>


2012 ◽  
Vol 12 (12) ◽  
pp. 5647-5659 ◽  
Author(s):  
A. Leskinen ◽  
A. Arola ◽  
M. Komppula ◽  
H. Portin ◽  
P. Tiitta ◽  
...  

Abstract. We introduce a four-year (in 2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose median values over this period were 7.2 Mm−1 (at 550 nm), 1.0 Mm−1 (at 637 nm), 0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the scattering coefficient was elevated to ~300 Mm−1 by plumes from forest fires in Russia. The absorption coefficient peaked in the winter when soot-containing particles derived from biomass burning were present. The higher relative absorption coefficients resulted in lower single scattering albedo in winter. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked, respectively, to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Decreases in the single scattering albedo in the morning and afternoon, distinct in the summertime, were linked to the increased traffic density at these hours. The scattering and absorption coefficients of residential and long-range transported aerosol (two separate cloud events) were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics.


2012 ◽  
Vol 12 (7) ◽  
pp. 3437-3454 ◽  
Author(s):  
C. S. Zender ◽  
A. G. Krolewski ◽  
M. G. Tosca ◽  
J. T. Randerson

Abstract. Land clearing for crops, plantations and grazing results in anthropogenic burning of tropical forests and peatlands in Indonesia, where images of fire-generated aerosol plumes have been captured by the Multi-angle Imaging SpectroRadiometer (MISR) since 2001. Here we analyze the size, shape, optical properties, and age of distinct fire-generated plumes in Borneo from 2001–2009. The local MISR overpass at 10:30 a.m. misses the afternoon peak of Borneo fire emissions, and may preferentially sample longer plumes from persistent fires burning overnight. Typically the smoke flows with the prevailing southeasterly surface winds at 3–4 m s−1, and forms ovoid plumes whose mean length, height, and cross-plume width are 41 km, 708 m, and 27% of the plume length, respectively. 50% of these plumes have length between 24 and 50 km, height between 523 and 993 m and width between 18% and 30% of plume length. Length and cross-plume width are lognormally distributed, while height follows a normal distribution. Borneo smoke plume heights are similar to previously reported plume heights, yet Borneo plumes are on average nearly three times longer than previously studied plumes. This could be due to sampling or to more persistent fires and greater fuel loads in peatlands than in other tropical forests. Plume area (median 169 km2, with 25th and 75th percentiles at 99 km2 and 304 km2, respectively) varies exponentially with length, though for most plumes a linear relation provides a good approximation. The MISR-estimated plume optical properties involve greater uncertainties than the geometric properties, and show patterns consistent with smoke aging. Optical depth increases by 15–25% in the down-plume direction, consistent with hygroscopic growth and nucleation overwhelming the effects of particle dispersion. Both particle single-scattering albedo and top-of-atmosphere reflectance peak about halfway down-plume, at values about 3% and 10% greater than at the origin, respectively. The initially oblong plumes become brighter and more circular with time, increasingly resembling smoke clouds. Wind speed does not explain a significant fraction of the variation in plume geometry. We provide a parameterization of plume shape that can help atmospheric models estimate the effects of plumes on weather, climate, and air quality. Plume age, the age of smoke furthest down-plume, is lognormally distributed with a median of 2.8 h (25th and 75th percentiles at 1.3 h and 4.0 h), different from the median ages reported in other studies. Intercomparison of our results with previous studies shows that the shape, height, optical depth, and lifetime characteristics reported for tropical biomass burning plumes on three continents are dissimilar and distinct from the same characteristics of non-tropical wildfire plumes.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2009 ◽  
Vol 9 (19) ◽  
pp. 7643-7655 ◽  
Author(s):  
B. I. Magi

Abstract. This study characterizes the aerosol over extratropical and tropical southern Africa during the biomass burning season by presenting an aerosol mass apportionment and aerosol optical properties. Carbonaceous aerosol species account for 54% and 83% of the extratropical and tropical aerosol mass, respectively, which is consistent with the fact that the major source of particulate matter in southern Africa is biomass burning. This mass apportionment implies that carbonaceous species in the form of organic carbon (OC) and black carbon (BC) play a critical role in the aerosol optical properties. By combining the in situ measurements of aerosol mass concentrations with concurrent measurements of aerosol optical properties at a wavelength of 550 nm, it is shown that 80–90% of the aerosol scattering is due to carbonaceous aerosol, and the derived mass scattering cross sections (MSC) for OC and BC are 3.9±0.6 m2/g and 1.6±0.2 m2/g, respectively. Derived values of mass absorption cross sections (MAC) for OC and BC are 0.7±0.6 m2/g and 8.2±1.1 m2/g, respectively. The values of MAC imply that ~26% of the aerosol absorption in southern Africa is due to OC, with the remainder due to BC. The results in this study provide important constraints for aerosol properties in a region dominated by biomass burning and should be integrated into climate models to improve aerosol simulations.


2020 ◽  
Author(s):  
Periklis Drakousis ◽  
Marios-Bruno Korras-Carraca ◽  
Hiren Jethva ◽  
Omar Torres ◽  
Nikos Hatzianastassiou

<p>Aerosol measurements are carried out worldwide in order to reduce the uncertainties about the impact of aerosols on climate. Over the past two decades, different methods (ground- or satellite-based) for measuring aerosol properties have been developed, covering a variety of approaches with different temporal and spatial scales, which can be considered complementary. Aerosol optical properties are essential for assessing the effects of aerosols on radiation and climate. Aerosol single scattering albedo (SSA), along with optical depth and asymmetry parameter, is one of the three key optical properties that are necessary for radiation transfer and climate models. At the same time, SSA strongly depends on different aerosol types, thus enabling the identification of these different aerosol particles. However, despite the strong need for aerosol SSA products with global and climatological coverage, and the significant progress in retrieving SSA from satellite measurements, the satellite SSA retrievals are still subjected to uncertainties.</p><p>In this study, we perform an evaluation of the OMAERUVd (PGE Version V1.8.9.1) daily L3 (1° x 1° latitude-longitude) aerosol SSA data, which are based on the enhanced two-channel OMAERUV algorithm that essentially uses the ultraviolet radiance data from Aura/Ozone Monitoring Instrument (OMI), through comparisons against daily SSA products from 541 globally distributed Aerosol Robotic Network (AERONET) stations for a 15-year period (2005-2019). The comparison is performed between the available OMAERUVd SSA data at 354 nm, 388 nm, and 500 nm, and the AERONET SSA data at 440 nm (or 443 nm). The comparison is made on an annual and seasonal basis in order to reveal possible seasonally dependent patterns, as well as on a climatological and a year-to-year basis. The statistical metrics, such as Coefficient of Correlation (R) and Bias, are computed for individual AERONET stations as well as for all stations. The effect of availability of common OMI and AERONET data pairs on the comparison is assessed by making comparisons when at least 10, 50 and 100 common pairs are available.</p><p>The results show that about 50% (75%) of OMI-AERONET matchups agree within the absolute difference of ±0.03 (±0.05) for the 500 nm OMI SSA and the 440 nm (or 443 nm) AERONET SSA. The corresponding percentage for the 388 nm OMI SSA and the 440 nm (or 443 nm) AERONET SSA increases to 58% (81%), while the corresponding numbers for the 354 nm SSA OMI and the 440 nm (or 443 nm) AERONET are 43% (67%). It is found that in overall, OMI tends mainly to overestimate (underestimate) SSA for the 500 nm (354 nm) products in comparison to AERONET 440 nm (or 443 nm) with a total bias of 0.025 (-0.024), or 2.7% (2.6%) in relative percentage terms with respect to AERONET (mean AERONET value equal to 0.908), and an overall R value of 0.399 (0.386). At 388 nm, OMI tends to retrieve higher SSA over regions where biomass burning occurs, against lower SSA values elsewhere, with overall bias and R values equal to -0.002 (0.22%) and 0.395, respectively.</p>


2014 ◽  
Vol 14 (3) ◽  
pp. 3459-3497 ◽  
Author(s):  
J. Chen ◽  
C. S. Zhao ◽  
N. Ma ◽  
P. Yan

Abstract. The relative humidity (RH) dependence of aerosol light scattering is an essential parameter for accurate estimation of the direct radiative forcing induced by aerosol particles. On account of the insufficient information of aerosol hygroscopicity in climate models, more details of the parameterized hygroscopic growth factors are urgently required. In this paper, a retrieval method to calculate the aerosol hygroscopicity parameter, κ, is proposed based on the in situ measured aerosol light scattering enhancement factor, namely f(RH), and particle number size distribution (PNSD) obtained from the HaChi (Haze in China) campaign. Measurements show that f(RH) sharply increases with the ascending RH, and the variation range of f(RH) is much wider at higher RH. Sensitivity study reveals that the f(RH) is more sensitive to the aerosol hygroscopicity than PNSD. f(RH) for polluted cases is distinctly higher than that for clean periods at a specific RH. The derived equivalent κ, combining with the PNSD measurements, is applied in the prediction of the CCN number concentration. Comparison between the predicted CCN number concentration with the derived equivalent κ and the measured ones agrees well, especially at high supersaturations. The proposed calculation algorithm of κ with the f(RH) measurements is demonstrated to be reasonable and can be widely used.


Sign in / Sign up

Export Citation Format

Share Document