scholarly journals Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

2011 ◽  
Vol 11 (2) ◽  
pp. 4881-4911 ◽  
Author(s):  
M. Vaïtilingom ◽  
T. Charbouillot ◽  
L. Deguillaume ◽  
R. Maisonobe ◽  
M. Parazols ◽  
...  

Abstract. Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10−19 for succinate to 1 × 10−18 mol cell−1 s−1 for formate at 17 °C and from 4 × 10−20 for succinate to 6 × 10−19 mol cell−1 s−1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora); the rates of biodegradation were determined and compared to the photodegradation rates involving •OH radicals. The biodegradation rates in "natural" and "artificial" cloud water were in the same order of magnitude; this confirms the significant role of the active biomass in the aqueous reactivity of clouds.

2004 ◽  
Vol 108 (4) ◽  
pp. 615-620 ◽  
Author(s):  
M. D. Hurley ◽  
M. P. Sulbaek Andersen ◽  
T. J. Wallington ◽  
D. A. Ellis ◽  
J. W. Martin ◽  
...  

2011 ◽  
Vol 11 (16) ◽  
pp. 8721-8733 ◽  
Author(s):  
M. Vaïtilingom ◽  
T. Charbouillot ◽  
L. Deguillaume ◽  
R. Maisonobe ◽  
M. Parazols ◽  
...  

Abstract. The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.


2020 ◽  
Vol 20 (20) ◽  
pp. 12223-12245
Author(s):  
Viral Shah ◽  
Daniel J. Jacob ◽  
Jonathan M. Moch ◽  
Xuan Wang ◽  
Shixian Zhai

Abstract. Cloud water acidity affects the atmospheric chemistry of sulfate and organic aerosol formation, halogen radical cycling, and trace metal speciation. Precipitation acidity including post-depositional inputs adversely affects soil and freshwater ecosystems. Here, we use the GEOS-Chem model of atmospheric chemistry to simulate the global distributions of cloud water and precipitation acidity as well as the total acid inputs to ecosystems from wet deposition. The model accounts for strong acids (H2SO4, HNO3, and HCl), weak acids (HCOOH, CH3COOH, CO2, and SO2), and weak bases (NH3 as well as dust and sea salt aerosol alkalinity). We compile a global data set of cloud water pH measurements for comparison with the model. The global mean observed cloud water pH is 5.2±0.9, compared to 5.0±0.8 in the model, with a range from 3 to 8 depending on the region. The lowest values are over East Asia, and the highest values are over deserts. Cloud water pH over East Asia is low because of large acid inputs (H2SO4 and HNO3), despite NH3 and dust neutralizing 70 % of these inputs. Cloud water pH is typically 4–5 over the US and Europe. Carboxylic acids account for less than 25 % of cloud water H+ in the Northern Hemisphere on an annual basis but 25 %–50 % in the Southern Hemisphere and over 50 % in the southern tropical continents, where they push the cloud water pH below 4.5. Anthropogenic emissions of SO2 and NOx (precursors of H2SO4 and HNO3) are decreasing at northern midlatitudes, but the effect on cloud water pH is strongly buffered by NH4+ and carboxylic acids. The global mean precipitation pH is 5.5 in GEOS-Chem, which is higher than the cloud water pH because of dilution and below-cloud scavenging of NH3 and dust. GEOS-Chem successfully reproduces the annual mean precipitation pH observations in North America, Europe, and eastern Asia. Carboxylic acids, which are undetected in routine observations due to biodegradation, lower the annual mean precipitation pH in these areas by 0.2 units. The acid wet deposition flux to terrestrial ecosystems taking into account the acidifying potential of NO3- and NH4+ in N-saturated ecosystems exceeds 50 meqm-2a-1 in East Asia and the Americas, which would affect sensitive ecosystems. NH4+ is the dominant acidifying species in wet deposition, contributing 41 % of the global acid flux to continents under N-saturated conditions.


2016 ◽  
Vol 49 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Mads P. Sulbaek Andersen ◽  
Sissel Bjørn Svendsen ◽  
Freja From Østerstrøm ◽  
Ole John Nielsen

2008 ◽  
Vol 199 (1) ◽  
pp. 92-97 ◽  
Author(s):  
M.P. Sulbaek Andersen ◽  
E.J.K. Nilsson ◽  
O.J. Nielsen ◽  
M.S. Johnson ◽  
M.D. Hurley ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Tugba Adiyaman ◽  
David A. Schisler ◽  
Patricia J. Slininger ◽  
Jennifer M. Sloan ◽  
Mark A. Jackson ◽  
...  

The microbiota of 84 different agricultural soils were transferred to separate samples of a γ irradiation-sterilized field soil enriched with potato periderm, and the resulting soils were assayed for biological suppressiveness to Phytophthora erythroseptica and their effect on zoospore production. The 13 most suppressive soil samples, which reduced zoospore production by 14 to 93% and disease severity on tubers by 6 to 21%, were used to isolate 279 organisms. Fourteen strains that reduce pink rot infections in preliminary tests were selected for further study. Six bacterial strains that reduced the severity of disease (P ≤ 0.05, Fischer's protected least significant difference) in subsequent tests were identified as Bacillus simplex (three strains), Pantoea agglomerans, Pseudomonas koreensis, and P. lini. Relative performance indices (RPIs) for biocontrol efficacy and for each of four kinetic parameters, including total colony-forming units (CFUmax), biomass production values (DWmax), cell production after 8 h (OD8), and time of recovery from oxygen depletion (DT) were calculated for each strain. Overall RPIEff,Kin values for each strain then were calculated using strain RPI values for both efficacy (RPIEff) and kinetics (RPIKin). Strains with the highest RPIEff,Kin possess the best biocontrol efficacy of the strains tested and liquid culture growth characteristics that suggest commercial development potential.


1992 ◽  
Vol 271 ◽  
Author(s):  
Charles D. Gagliardi ◽  
Dilum Dunuwila ◽  
Beatrice A. Van Vlierberge-Torgerson ◽  
Kris A. Berglund

ABSTRACTTitanium alkoxides modified by carboxylic acids have been widely studied as the molecular precursors to ceramic materials. These alkoxide complexes have also been very useful in the formation of stable, porous, optically clear films having many novel applications such as chemical sensors, catalytic supports, and ion-exchange media. To improve the processing of these materials, it is essential to better understand the kinetics of the chemical transformations which occur.The kinetics of the hydrolysis reaction are studied for selected carboxylic acids using Raman spectroscopy to probe the chemistry of the process. The study has a special emphasis on the titanium isopropoxide-valeric acid system due to the superior quality of these films over other carboxylates. Greater knowledge of the hydrolysis kinetics allows increased control over the quality of the film materials and should be of general interest to those working with modified metal alkoxides.


2011 ◽  
Vol 115 (33) ◽  
pp. 9160-9168 ◽  
Author(s):  
Emese Szabó ◽  
Mokhtar Djehiche ◽  
Matthieu Riva ◽  
Christa Fittschen ◽  
Patrice Coddeville ◽  
...  

2014 ◽  
Vol 14 (23) ◽  
pp. 32233-32323 ◽  
Author(s):  
M. Bocquet ◽  
H. Elbern ◽  
H. Eskes ◽  
M. Hirtl ◽  
R. Žabkar ◽  
...  

Abstract. Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorological and chemical data; however, because CCMM are fairly recent, data assimilation in CCMM has been limited to date. We review here the current status of data assimilation in atmospheric chemistry models with a particular focus on future prospects for data assimilation in CCMM. We first review the methods available for data assimilation in atmospheric models, including variational methods, ensemble Kalman filters, and hybrid methods. Next, we review past applications that have included chemical data assimilation in chemical transport models (CTM) and in CCMM. Observational data sets available for chemical data assimilation are described, including surface data, surface-based remote sensing, airborne data, and satellite data. Several case studies of chemical data assimilation in CCMM are presented to highlight the benefits obtained by assimilating chemical data in CCMM. A case study of data assimilation to constrain emissions is also presented. There are few examples to date of joint meteorological and chemical data assimilation in CCMM and potential difficulties associated with data assimilation in CCMM are discussed. As the number of variables being assimilated increases, it is essential to characterize correctly the errors; in particular, the specification of error cross-correlations may be problematic. In some cases, offline diagnostics are necessary to ensure that data assimilation can truly improve model performance. However, the main challenge is likely to be the paucity of chemical data available for assimilation in CCMM.


Sign in / Sign up

Export Citation Format

Share Document