scholarly journals Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems

2020 ◽  
Vol 20 (20) ◽  
pp. 12223-12245
Author(s):  
Viral Shah ◽  
Daniel J. Jacob ◽  
Jonathan M. Moch ◽  
Xuan Wang ◽  
Shixian Zhai

Abstract. Cloud water acidity affects the atmospheric chemistry of sulfate and organic aerosol formation, halogen radical cycling, and trace metal speciation. Precipitation acidity including post-depositional inputs adversely affects soil and freshwater ecosystems. Here, we use the GEOS-Chem model of atmospheric chemistry to simulate the global distributions of cloud water and precipitation acidity as well as the total acid inputs to ecosystems from wet deposition. The model accounts for strong acids (H2SO4, HNO3, and HCl), weak acids (HCOOH, CH3COOH, CO2, and SO2), and weak bases (NH3 as well as dust and sea salt aerosol alkalinity). We compile a global data set of cloud water pH measurements for comparison with the model. The global mean observed cloud water pH is 5.2±0.9, compared to 5.0±0.8 in the model, with a range from 3 to 8 depending on the region. The lowest values are over East Asia, and the highest values are over deserts. Cloud water pH over East Asia is low because of large acid inputs (H2SO4 and HNO3), despite NH3 and dust neutralizing 70 % of these inputs. Cloud water pH is typically 4–5 over the US and Europe. Carboxylic acids account for less than 25 % of cloud water H+ in the Northern Hemisphere on an annual basis but 25 %–50 % in the Southern Hemisphere and over 50 % in the southern tropical continents, where they push the cloud water pH below 4.5. Anthropogenic emissions of SO2 and NOx (precursors of H2SO4 and HNO3) are decreasing at northern midlatitudes, but the effect on cloud water pH is strongly buffered by NH4+ and carboxylic acids. The global mean precipitation pH is 5.5 in GEOS-Chem, which is higher than the cloud water pH because of dilution and below-cloud scavenging of NH3 and dust. GEOS-Chem successfully reproduces the annual mean precipitation pH observations in North America, Europe, and eastern Asia. Carboxylic acids, which are undetected in routine observations due to biodegradation, lower the annual mean precipitation pH in these areas by 0.2 units. The acid wet deposition flux to terrestrial ecosystems taking into account the acidifying potential of NO3- and NH4+ in N-saturated ecosystems exceeds 50 meqm-2a-1 in East Asia and the Americas, which would affect sensitive ecosystems. NH4+ is the dominant acidifying species in wet deposition, contributing 41 % of the global acid flux to continents under N-saturated conditions.

2020 ◽  
Author(s):  
Viral Shah ◽  
Daniel J. Jacob ◽  
Jonathan M. Moch ◽  
Xuan Wang ◽  
Shixian Zhai

Abstract. Cloudwater acidity affects the atmospheric chemistry of sulfate and organic aerosol formation, halogen radical cycling, and trace metal speciation. Rainwater acidity including post-depositional inputs adversely affects soil and freshwater ecosystems. Here we use the GEOS-Chem model of atmospheric chemistry to simulate the global distributions of cloud- and rainwater acidity, and the total acid inputs to ecosystems from wet deposition. The model accounts for strong acids (H2SO4, HNO3, HCl), weak acids (HCOOH, CH3COOH, CO2, SO2), and weak bases (NH3, dust and sea salt aerosol alkalinity). We compile a global dataset of cloudwater pH measurements for comparison with the model. The global mean observed cloudwater pH is 5.2 ± 0.9, compared to 5.0 ± 0.8 in the model, with a range of 3 to 8 depending on region. The lowest values are over East Asia and the highest values are over deserts. Cloudwater pH over East Asia is low because of large acid inputs (H2SO4, HNO3), despite NH3 and dust neutralizing 70 % of these inputs. Cloudwater pH is typically 4–5 over the US and Europe. Carboxylic acids account for less than 25 % of cloudwater H+ in the northern hemisphere on an annual basis, but 25–50 % in the southern hemisphere and over 50 % in the southern tropical continents where they push the cloudwater pH below 4.5. Anthropogenic emissions of SO2 and NOx (precursors of H2SO4 and HNO3) are decreasing at northern mid-latitudes, but the effect on cloudwater pH is strongly buffered by NH4+ and carboxylic acids. The global mean rainwater pH is 5.5 in GEOS-Chem, higher than the cloudwater pH because of dilution and below-cloud scavenging of NH3 and dust. GEOS-Chem successfully reproduces the rainwater pH observations in North America, Europe, and eastern Asia. Carboxylic acids, which are undetected in routine observations due to biodegradation, lower the annual mean rainwater pH in these areas by 0.2 units. The acid wet deposition flux to terrestrial ecosystems taking into account the acidifying potential of NO3− and NH4+ in N-saturated ecosystems exceeds 50 meq m−2 a−1 in East Asia and the Americas, which would affect sensitive ecosystems. NH4+ is the dominant acidifying species in wet deposition, contributing 41 % of the global acid flux to continents under N-saturated conditions.


2021 ◽  
Vol 14 (11) ◽  
pp. 7021-7046
Author(s):  
Yao Ge ◽  
Mathew R. Heal ◽  
David S. Stevenson ◽  
Peter Wind ◽  
Massimo Vieno

Abstract. Atmospheric pollution has many profound effects on human health, ecosystems, and the climate. Of concern are high concentrations and deposition of reactive nitrogen (Nr) species, especially of reduced N (gaseous NH3, particulate NH4+). Atmospheric chemistry and transport models (ACTMs) are crucial to understanding sources and impacts of Nr chemistry and its potential mitigation. Here we undertake the first evaluation of the global version of the EMEP MSC-W ACTM driven by WRF meteorology (1∘×1∘ resolution), with a focus on surface concentrations and wet deposition of N and S species relevant to investigation of atmospheric Nr and secondary inorganic aerosol (SIA). The model–measurement comparison is conducted both spatially and temporally, covering 10 monitoring networks worldwide. Model simulations for 2010 compared use of both HTAP and ECLIPSEE (ECLIPSE annual total with EDGAR monthly profile) emissions inventories; those for 2015 used ECLIPSEE only. Simulations of primary pollutants are somewhat sensitive to the choice of inventory in places where regional differences in primary emissions between the two inventories are apparent (e.g. China) but are much less sensitive for secondary components. For example, the difference in modelled global annual mean surface NH3 concentration using the two 2010 inventories is 18 % (HTAP: 0.26 µg m−3; ECLIPSEE: 0.31 µg m−3) but is only 3.5 % for NH4+ (HTAP: 0.316 µg m−3; ECLIPSEE: 0.305 µg m−3). Comparisons of 2010 and 2015 surface concentrations between the model and measurements demonstrate that the model captures the overall spatial and seasonal variations well for the major inorganic pollutants NH3, NO2, SO2, HNO3, NH4+, NO3-, and SO42- and their wet deposition in East Asia, Southeast Asia, Europe, and North America. The model shows better correlations with annual average measurements for networks in Southeast Asia (mean R for seven species: R7‾=0.73), Europe (R7‾=0.67), and North America (R7‾=0.63) than in East Asia (R5‾=0.35) (data for 2015), which suggests potential issues with the measurements in the latter network. Temporally, both model and measurements agree on higher NH3 concentrations in spring and summer and lower concentrations in winter. The model slightly underestimates annual total precipitation measurements (by 13 %–45 %) but agrees well with the spatial variations in precipitation in all four world regions (0.65–0.94 R range). High correlations between measured and modelled NH4+ precipitation concentrations are also observed in all regions except East Asia. For annual total wet deposition of reduced N, the greatest consistency is in North America (0.75–0.82 R range), followed by Southeast Asia (R=0.68) and Europe (R=0.61). Model–measurement bias varies between species in different networks; for example, bias for NH4+ and NO3- is largest in Europe and North America and smallest in East Asia and Southeast Asia. The greater uniformity in spatial correlations than in biases suggests that the major driver of model–measurement discrepancies (aside from differing spatial representativeness and uncertainties and biases in measurements) are shortcomings in absolute emissions rather than in modelling the atmospheric processes. The comprehensive evaluations presented in this study support the application of this model framework for global analysis of current and potential future budgets and deposition of Nr and SIA.


2021 ◽  
Author(s):  
Yao Ge ◽  
Mathew R. Heal ◽  
David S. Stevenson ◽  
Peter Wind ◽  
Massimo Vieno

Abstract. Atmospheric pollution has many profound effects on human health, ecosystems, and the climate. Of concern are high concentrations and deposition of reactive nitrogen (Nr) species, especially of reduced N (gaseous NH3, particulate NH4+). Atmospheric chemistry and transport models (ACTMs) are crucial to understanding sources and impacts of Nr chemistry and its potential mitigation. Here we undertake the first evaluation of the global version of the EMEP MSC-W ACTM driven by WRF meteorology (1° × 1° resolution), with a focus on surface concentrations and wet deposition of N and S species relevant to investigation of atmospheric Nr and secondary inorganic aerosol (SIA). The model-measurement comparison is conducted both spatially and temporally, covering 9 monitoring networks worldwide. Model simulations for 2010 compared use of both HTAP and ECLIPSEE (ECLIPSE annual total with EDGAR monthly profile) emissions inventories; those for 2015 used ECLIPSEE only. Simulations of primary pollutants are somewhat sensitive to the choice of inventory in places where regional differences in primary emissions between the two inventories are apparent (e.g. China), but much less so for secondary components. For example, the difference in modelled global annual mean surface NH3 concentration using the two 2010 inventories is 18 % (HTAP: 0.26 μg m−3; ECLIPSEE: 0.31 μg m−3) but only 3.5 % for NH4+ (HTAP: 0.316 μg m−3; ECLIPSEE: 0.305 μg m−3). Comparisons of 2010 and 2015 surface concentrations between model and measurement demonstrate that the model captures well the overall spatial and seasonal variations of the major inorganic pollutants NH3, NO2, SO2, HNO3, NH4+, NO3−, SO42−, and their wet deposition in East Asia, Southeast Asia, Europe and North America. The model shows better correlations with annual average measurements for networks in Southeast Asia (Mean R for 7 species:  = 0.73), Europe ( = 0.67) and North America ( = 0.63) than in East Asia ( = 0.35) (data for 2015), which suggests potential issues with the measurements in the latter network. Temporally, both model and measurement agree on higher NH3 concentrations in spring and summer, and lower concentrations in winter. The model slightly underestimates annual total precipitation measurements (by 13–34 %) but agrees well with the spatial variations in precipitation in all four world regions (0.65–0.78 R range). High correlations between measured and modelled NH4+ precipitation concentrations are also observed in all regions except East Asia. For annual total wet deposition of reduced N, the greatest consistency is in North America (R = 0.75), followed by Southeast Asia (R = 0.68) and Europe (R = 0.61). Model-measurement bias varies between species in different networks; for example, bias for NH4+ and NO3− is most in Europe and North America and least in East and Southeast Asia. The greater uniformity in spatial correlations than in biases suggests that the major driver of model-measurement discrepancies (aside from differing spatial representativeness and uncertainties and biases in measurements) are shortcomings in absolute emissions rather than in modelling the atmospheric processes. The comprehensive evaluations presented in this study support the application of this model framework for global analysis of current and potential future budgets and deposition of Nr and SIA.


2011 ◽  
Vol 11 (16) ◽  
pp. 8721-8733 ◽  
Author(s):  
M. Vaïtilingom ◽  
T. Charbouillot ◽  
L. Deguillaume ◽  
R. Maisonobe ◽  
M. Parazols ◽  
...  

Abstract. The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.


2011 ◽  
Vol 11 (2) ◽  
pp. 4881-4911 ◽  
Author(s):  
M. Vaïtilingom ◽  
T. Charbouillot ◽  
L. Deguillaume ◽  
R. Maisonobe ◽  
M. Parazols ◽  
...  

Abstract. Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10−19 for succinate to 1 × 10−18 mol cell−1 s−1 for formate at 17 °C and from 4 × 10−20 for succinate to 6 × 10−19 mol cell−1 s−1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora); the rates of biodegradation were determined and compared to the photodegradation rates involving •OH radicals. The biodegradation rates in "natural" and "artificial" cloud water were in the same order of magnitude; this confirms the significant role of the active biomass in the aqueous reactivity of clouds.


2018 ◽  
Author(s):  
Ying Wei ◽  
Xueshun Chen ◽  
Huansheng Chen ◽  
Jie Li ◽  
Zifa Wang ◽  
...  

Abstract. In this study, a full description and comprehensive evaluation of a global-regional nested model, the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics (IAP-AACM), is presented for the first time. Not only the global budgets and distribution, but also a comparison of nested simulation over China against multi-datasets are investigated, benefiting from the access of air quality monitoring data in China since 2013 and the Model Inter-Comparison Study for Asia project. The model results and analysis can greatly help reduce uncertainties and understand model diversity in assessing global and regional aerosol effects, especially over East Asia and areas affected by East Asia. The 1-year simulation for 2014 shows that the IAP-AACM is within the range of other models, and well reproduces both spatial distribution and seasonal variation of trace gases and aerosols over major continents and oceans (mostly within the factor of two). The model nicely captures spatial variation for carbon monoxide except an underestimation over the ocean that also shown in other models, which suggests the need for more accurate emission rate of ocean source. For aerosols, the simulation of fine-mode particulate matter (PM2.5) matches observation well and it has a better simulating ability on primary aerosols than secondary aerosols. This calls for more investigation on aerosol chemistry. Furthermore, IAP-AACM shows the superiority of global model, compared with regional model, on performing regional transportation for the nested simulation over East Asia. For the city evaluation over China, the model reproduces variation of sulfur dioxide (SO2), nitrogen dioxide (NO2) and PM2.5 accurately in most cities, with correlation coefficients above 0.5. Compared to the global simulation, the nested simulation exhibits an improved ability to capture the high temporal and spatial variability over China. In particular, the correlation coefficients for PM2.5, SO2 and NO2 are raised by ~ 0.25, ~ 0.15 and ~ 0.2 respectively in the nested grid. The summary provides constructive information for the application of chemical transport models. In future, we recommend the model's ability to capture high spatial variation of PM2.5 is yet to be improved.


2019 ◽  
Vol 46 (7) ◽  
pp. 4039-4048 ◽  
Author(s):  
S. T. Turnock ◽  
G. W. Mann ◽  
M. T. Woodhouse ◽  
M. Dalvi ◽  
F. M. O'Connor ◽  
...  

2021 ◽  
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

<p>A stationary, computationally efficient  scheme, ChAP-1.0 (Chemistry and Aerosol Processes, version 1.0) for the sulphur cycle in the troposphereis developed. This scheme is envisaged to be implemented into Earth system models of intermediate complexity (EMICs). The scheme accounts for sulphur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulphates, and dry and wet deposition of sulphates on the surface.<br>The calculations with the scheme were performed with the anthropogenic emissions of sulphur compounds into the atmosphere for 1850-2000 according to the CMIP5 (Coupled Models Intercomparison Project, phase 5) 'historical' protocol, with the ERA-Interim meteorology, and assuming that natural sources of sulphur into the atmosphere remain unchanged during this period. The model reasonably reproduces characteristics of the tropospheric sulphur cycle known from observations and other simulations (e.g., in the Atmospheric Chemistry and Climate Model Intercomparison Project phase II (ACCMIP) simulations, Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, and the Meteorological Synthesizing Centre–West of the European Monitoring and Evaluation Programme (EMEP MSC-W) data). In particular, in 1980's and 1990's, , when the global anthropogenic emission of sulphur, global atmospheric burdens of SO<sub>2</sub> and SO<sub>4</sub> account, correspondingly, 0.2 TgS and 0.4 TgS. In our scheme, about half of the emitted sulphur dioxide is deposited to the surface and the rest in oxidised into sulphates. The latter mostly removed from the atmosphere by wet deposition. The lifetime of the SO<sub>2</sub> and SO<sub>4</sub> in the atmosphere is, respectively, 1.0±0.1 days and 4.1±0.3 days.<br>Despite its simplicity, our scheme may be successfully used to simulate sulphur/sulphates pollution in the atmosphere at coarse spatial and time scales and an impact of this pollution to direct radiative effect of sulphates on climate, their respective indirect (cloud- and precipitation-related) effects, as well as an impact of sulphur compounds on the terrestrial carbon cycle.</p>


2018 ◽  
Author(s):  
Jiani Tan ◽  
Joshua S. Fu ◽  
Frank Dentener ◽  
Jian Sun ◽  
Louisa Emmons ◽  
...  

Abstract. This study uses multi-model ensemble results of 11 models from the 2nd phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modelled wet deposition is evaluated with observation networks in North America, Europe and Asia. The modelled results agree well with observations, with 76–83 % of stations having predicted within ±50 % of observations. The results underestimate SO42−, NO3− and NH4+ wet depositions in some European and East Asian stations, but overestimate NO3− wet deposition in Eastern United States. Inter-comparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modelled dry deposition is generally higher than the “inferential” data calculated by observed concentration and modelled velocity in North America, but the inferential data has high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % of the deposits on continental regions and 51 % on ocean (19 % on coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. 65 % of N is deposited on the continental regions and 35 % is on ocean (15 % on coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Compared our results to the results in 2001 from HTAP I, we find that the global distributions of S and N depositions have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44% ). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia (5 Tg(N) and 39 %), East Asia (4 Tg(N) and 21 %) and Southeast Asia (2 Tg(N) and 21 %). The NHx deposition is increased with no control policy on NH3 emission in North America. On the other hand, NOy deposition starts to dominate in East Asia (especially China) due to boosted NOx emission in recent years.


2011 ◽  
Vol 11 (4) ◽  
pp. 13099-13139 ◽  
Author(s):  
G. González Abad ◽  
N. D. C. Allen ◽  
P. F. Bernath ◽  
C. D. Boone ◽  
S. D. McLeod ◽  
...  

Abstract. Near global upper tropospheric concentrations of carbon monoxide (CO), ethane (C2H6) and ethyne (C2H2) from ACE (Atmospheric Chemistry Experiment) Fourier transform spectrometer on board the Canadian satellite SCISAT-1 are presented and compared with the output from the Chemical Transport Model (CTM) GEOS-Chem. The retrievals of ethane and ethyne from ACE have been improved for this paper by using new sets of microwindows compared with those for previous versions of ACE data. With the improved ethyne retrieval we have been able to produce a near global upper tropospheric distribution of C2H2 from space. Carbon monoxide, ethane and ethyne concentrations retrieved using ACE spectra show the expected seasonality linked to variations in the anthropogenic emissions and destruction rates as well as seasonal biomass burning activity. The GEOS-Chem model was run using the dicarbonyl chemistry suite, an extended chemical mechanism in which ethyne is treated explicitly. Seasonal cycles observed from satellite data are well reproduced by the model output, however the simulated CO concentrations are found to be systematically biased low over the Northern Hemisphere. An average negative global mean bias of 12% and 7% of the model relative to the satellite observations has been found for CO and C2H6 respectively and a positive global mean bias of 1% has been found for C2H2. ACE data are compared for validation purposes with MkIV spectrometer data and Global Tropospheric Experiment (GTE) TRACE-A campaign data showing good agreement with all of them.


Sign in / Sign up

Export Citation Format

Share Document