scholarly journals H<sub>2</sub> vertical profiles in the continental boundary layer: measurements at the Cabauw tall tower in the Netherlands

2011 ◽  
Vol 11 (2) ◽  
pp. 5589-5639 ◽  
Author(s):  
M. E. Popa ◽  
A. T. Vermeulen ◽  
W. C. M. van den Bulk ◽  
P. A. C. Jongejan ◽  
A. M. Batenburg ◽  
...  

Abstract. In-situ, quasi-continuous measurements of atmospheric hydrogen (H2) have been performed since 2007 at the Cabauw tall tower station in the Netherlands. Mole fractions of H2, CO and several greenhouse gases are determined simultaneously in air sampled successively at four heights, between 20 and 200 m above ground level. 222Rn measurements are performed in air sampled at 20 and 200 m. This H2 dataset represents the first in-situ, quasi-continuous measurement series of vertical profiles of H2 in the lower continental boundary layer. From the three-year long time series, we characterize the main features and variability patterns of H2 and CO on various time scales; the time series is too short to justify an attempt to determine multi-annual trends. Seasonal cycles are present in both H2 and CO, and their amplitude varies with the sampling height. The seasonality is evident in both the "baseline" values and in the short term (diurnal to synoptic time scales) variability, the latter being significantly larger during winter. The observed H2 short term signals and vertical gradients are in many cases well correlated to other species, especially to CO. On the other hand, H2 has at times a behaviour which differentiates it from all the other species measured, due to its particular distribution of sources and sinks, that is, with the main source in our area (anthropogenic emissions) and the main sink (soil uptake) both near ground level. The local to regional soil sink of H2 is observable as H2 depletion at the lower sampling levels in some of the stable nights, although the signals at Cabauw are smaller than observed at other stations. Positive vertical gradients are another consequence of the soil uptake. Our estimation for the regional H2 soil uptake flux, using the radon tracer method, is (−1.89 ± 0.26) × 10−5 g/(m2h), significantly smaller than other recent results from Europe. Local soil and weather characteristics might be responsible for the very low soil uptake of H2. Our result could also be biased by the absence of radon flux estimates that could reliably approximate the fluxes during the relevant time intervals in our study domain. H2/CO ratios of the traffic emissions computed from our data, with an average of 0.54 ± 0.07 mol:mol, are larger and more scattered than estimated in some of the previous studies in Europe. This difference can be explained by a different driving regime, due to the frequent traffic jams in the influence area of Cabauw. In contrast, the H2/CO ratios of the large scale pollution events, with an average of 0.36 ± 0.05 mol:mol, are very similar to results of previous studies; these ratios were observed to slightly increase with sampling height, possibly due to a stronger influence of soil uptake at the lower sampling heights.

2011 ◽  
Vol 11 (13) ◽  
pp. 6425-6443 ◽  
Author(s):  
M. E. Popa ◽  
A. T. Vermeulen ◽  
W. C. M. van den Bulk ◽  
P. A. C. Jongejan ◽  
A. M. Batenburg ◽  
...  

Abstract. In-situ, quasi-continuous measurements of atmospheric hydrogen (H2) have been performed since October 2007 at the Cabauw tall tower station in the Netherlands. Mole fractions of H2, CO and several greenhouse gases are determined simultaneously in air sampled successively at four heights, between 20 and 200 m above ground level. 222Rn measurements are performed in air sampled at 20 and 200 m. This H2 dataset represents the first in-situ, quasi-continuous long-term measurement series of vertical profiles of H2 in the lower continental boundary layer. Seasonal cycles are present at all heights in both H2 and CO, and their amplitude varies with the sampling height. The seasonality is evident in both the "baseline" values and in the short term (diurnal to synoptic time scales) variability, the latter being significantly larger during winter. The observed H2 short term signals and vertical gradients are in many cases well correlated to other species, especially to CO. On the other hand, H2 has at times a unique behaviour, due to its particular distribution of sources and sinks. Our estimation for the regional H2 soil uptake flux, using the radon tracer method, is (−1.89 ± 0.26) × 10−5 g/(m2 h), significantly smaller than other recent results from Europe. H2/CO ratios of the traffic emissions computed from our data, with an average of 0.54 ± 0.07 mol:mol, are larger and more variable than estimated in some of the previous studies in Europe. This difference can be explained by a different driving regime, due to the frequent traffic jams in the influence area of Cabauw. The H2/CO ratios of the large scale pollution events have an average of 0.36 ± 0.05 mol:mol; these ratios were observed to slightly increase with sampling height, possibly due to a stronger influence of soil uptake at the lower sampling heights.


2012 ◽  
Vol 12 (15) ◽  
pp. 6741-6755 ◽  
Author(s):  
J. Messerschmidt ◽  
H. Chen ◽  
N. M. Deutscher ◽  
C. Gerbig ◽  
P. Grupe ◽  
...  

Abstract. The in situ boundary layer measurement site in Białystok (Poland) has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS) complements the on-site in situ facilities and FTS solar absorption measurements have been recorded nearly continuously in clear and partially cloudy conditions since March 2009. Here, the FTS measurements are compared with the collocated tall tower data. Additionally, simulations of the Jena CO2 inversion model are evaluated with the Białystok measurement facilities. The simulated seasonal CO2 cycle is slightly overestimated by a mean difference of 1.2 ppm ± 0.9 ppm (1σ) in comparison with the FTS measurements. CO2 concentrations at the surface, measured at the tall tower (5 m, 90 m, 300 m), are slightly underestimated by −1.5 ppm, −1.6 ppm, and −0.7 ppm respectively during the day and by −9.1 ppm, −5.9 ppm, and −1.3 ppm during the night. The comparison of the simulated CO2 profiles with low aircraft profiles shows a slight overestimation of the lower troposphere (by up to 1 ppm) and an underestimation in near-surface heights until 800 m (by up to 2.5 ppm). In an appendix the automated FTS observatory, including the hardware components and the automation software, is described in its basics.


2013 ◽  
Vol 6 (3) ◽  
pp. 719-739 ◽  
Author(s):  
S. Baidar ◽  
H. Oetjen ◽  
S. Coburn ◽  
B. Dix ◽  
I. Ortega ◽  
...  

Abstract. The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ε, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the South Coast Air Basin (SCAB) are presented. These profiles contain ~12 degrees of freedom (DOF) over a 3.5 km altitude range, an independent information approximately every 250 m. The boundary layer NO2 concentration, and the integral aerosol extinction over height (aerosol optical depth, AOD) agrees well with nearby ground-based in situ NO2 measurement, and AERONET station. The detection limits of NO2, CHOCHO, HCHO, H2O442, &amp;varepsilon;360, &amp;varepsilon;477 for 30 s integration time spectra recorded forward of the plane are 5 ppt, 3 ppt, 100 ppt, 42 ppm, 0.004 km−1, 0.002 km−1 in the free troposphere (FT), and 30 ppt, 16 ppt, 540 ppt, 252 ppm, 0.012 km−1, 0.006 km−1 inside the boundary layer (BL), respectively. Mobile column observations of trace gases and aerosols are complimentary to in situ observations, and help bridge the spatial scales that are probed by satellites and ground-based observations, and predicted by atmospheric models.


2014 ◽  
Vol 7 (1) ◽  
pp. 569-604 ◽  
Author(s):  
M. Schmidt ◽  
M. Lopez ◽  
C. Yver Kwok ◽  
C. Messager ◽  
M. Ramonet ◽  
...  

Abstract. Results from the Trainou tall tower measurement station installed in 2006, are presented for atmospheric measurements of CO2, CH4, N2O, SF6, CO, H2 mole fractions and Radon-222 activity. Air is sampled from four sampling heights (180 m, 100 m, 50 m and 5 m) of the Trainou 200 m television tower in the Orléans forest in France (47°57'53'' N, 2°06'45'' E, 131 m a.s.l.). The station is equipped with a custom-build CO2 analyzer (CARIBOU), which is based on a commercial NDIR analyser (Licor 6252), and a coupled gas chromatographic GC system equipped with ECD and FID (HP6890N, Agilent) and a reduction gas detector (PP1, Peak Performer). Air intakes, pumping and air drying system are shared between the CARIBOU and the GC systems. After some initial problems, we achieved short-term repeatability (1 sigma, over several days) for the GC system of of 0.05 ppm for CO2, 1.4 ppb for CH4, 0.25 ppb for N2O, 0.08 ppb for SF6, 0.88 ppb for CO and 3.8 for H2. The repeatability of the CARIBOU CO2 analyser is 0.06 ppm. In addition to the in-situ measurements, weekly flask sampling is performed, and flask air samples are analysed at the LSCE central laboratory for the same species as well for stable isotopes of CO2. The comparison between in-situ measurements and the flask sampling showed averaged differences of 0.08 ± 1.4 ppm CO2, 0.69 ± 7.3 ppb CH4, 0.64 ± 0.62 ppb N2O, 0.01 ± 0.1 ppt SF6 and 1.5 ± 5.3 ppb CO for the years 2008–2012. At Trainou station, the mean annual increase rates from 2007 to 2011 at the 180 m sampling height were 2.2 ppm yr−1 for CO2, 4 ppb yr−1 for CH4, 0.78 ppb yr−1 for N2O and 0.29 ppt yr−1 for SF6 respectively. For all species the 180 m sampling level showed the smallest diurnal variation. Mean diurnal gradients between the 50 m and the 180 m sampling level reached up to 30 ppm CO2, 15 ppm CH4 or 0.5 ppb N2O during night whereas the mean gradients are smaller than 0.5 ppm for CO2 and 1.5 ppb for CH4 during afternoon.


2012 ◽  
Vol 12 (5) ◽  
pp. 11539-11566 ◽  
Author(s):  
L. Haszpra ◽  
M. Ramonet ◽  
M. Schmidt ◽  
Z. Barcza ◽  
Z. Pátkai ◽  
...  

Abstract. Eight years of occasional flask air sampling and 3 yr of frequent in situ measurements of carbon dioxide (CO2) vertical profiles on board of a small aircraft, over a tall tower greenhouse gases monitoring site in Hungary are used for the analysis of the variations of vertical profile of CO2 mole fraction. Using the airborne vertical profiles and the measurements along the 115 m tall tower it is shown that the measurements at the top of the tower estimate the mean boundary layer CO2 mole fraction during the mid-afternoon fairly well, with an underestimation of 0.27–0.85 μmol mol−1 in summer, and an overestimation of 0.66–1.83 μmol mol−1 in winter. The seasonal cycle of CO2 mole fraction is damped with elevation. While the amplitude of the seasonal cycle is 28.5 μmol mol−1 at 10 m above the ground, it is only 10.7 μmol mol−1 in the layer of 2500–3000 m corresponding to the lower free atmosphere above the well-mixed boundary layer. The maximum mole fraction in the layer of 2500–3000 m can be observed around 25 March on average, two weeks ahead of that of the marine boundary layer reference (GLOBALVIEW). By contrast, close to the ground, the maximum CO2 mole fraction is observed late December, early January. The specific seasonal behavior is attributed to the climatology of vertical mixing of the atmosphere in the Carpathian Basin.


2020 ◽  
Vol 20 (13) ◽  
pp. 7911-7928 ◽  
Author(s):  
Barbara Altstädter ◽  
Konrad Deetz ◽  
Bernhard Vogel ◽  
Karmen Babić ◽  
Cheikh Dione ◽  
...  

Abstract. This study underlines the important role of the transported black carbon (BC) mass concentration in the West African monsoon (WAM) area. BC was measured with a micro-aethalometer integrated in the payload bay of the unmanned research aircraft ALADINA (Application of Light-weight Aircraft for Detecting IN situ Aerosol). As part of the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) project, 53 measurement flights were carried out at Savè, Benin, on 2–16 July 2016. A high variability of BC (1.79 to 2.42±0.31 µg m−3) was calculated along 155 vertical profiles that were performed below cloud base in the atmospheric boundary layer (ABL). In contrast to initial expectations of primary emissions, the vertical distribution of BC was mainly influenced by the stratification of the ABL during the WAM season. The article focuses on an event (14 and 15 July 2016) which showed distinct layers of BC in the lowermost 900 m above ground level (a.g.l.). Low concentrations of NOx and CO were sampled at the Savè supersite near the aircraft measurements and suggested a marginal impact of local sources during the case study. The lack of primary BC emissions was verified by a comparison of the measured BC with the model COSMO-ART (Consortium for Small-scale Modelling–Aerosols and Reactive Trace gases) that was applied for the field campaign period. The modelled vertical profiles of BC led to the assumption that the measured BC was already altered, as the size was mainly dominated by the accumulation mode. Further, calculated vertical transects of wind speed and BC presume that the observed BC layer was transported from the south with maritime inflow but was mixed vertically after the onset of a nocturnal low-level jet at the measurement site. This report contributes to the scope of DACCIWA by linking airborne BC data with ground observations and a model, and it illustrates the importance of a more profound understanding of the interaction between BC and the ABL in the WAM region.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hossein Panahifar ◽  
Ruhollah Moradhaseli ◽  
Hamid Reza Khalesifard

AbstractThe highly polluted atmosphere above Tehran has been investigated by using a polarization lidar operating at 532 nm, in-situ particulate matter suites distributed over the city, and meteorological observations. The measurement campaign is conducted from Nov. 2014 to Jan. 2016. Three typical cases are studied in detail where, the atmosphere is polluted with urban pollution, mixture of urban pollution and dust particles from local sources, and long range transported dust from the Arabian Peninsula. For these cases, vertical profiles of the lidar backscatter coefficient, extinction coefficients, particle depolarization ratio ($$\delta _{\text {p}}$$ δ p ) and mass concentrations of atmospheric aerosols (separated into dust and non-dust particles) are presented. Using the lidar recordings, variations of the planetary boundary layer height above the city are investigated along the year. During November to February, lidar profiles frequently show polluted boundary layers that are reaching up to 1 km above the ground level. The depolarization ratio ($$\delta _{\text {p}}$$ δ p ) varies between 0.04 and 0.08 in the polluted boundary layer. During the campaign, for 103 days the urban pollution was dominant, 45 recorded dust events ($$0.15<\delta _{\text {p}}<0.20$$ 0.15 < δ p < 0.20 ) were originated from the dry regions in the south of Tehran and 15 dust events ($$0.20<\delta _{\text {p}}<0.35$$ 0.20 < δ p < 0.35 ) impacted the city that were originated from the Arabian Desert and Mesopotamia.


2012 ◽  
Vol 51 (12) ◽  
pp. 2172-2187 ◽  
Author(s):  
Noora Eresmaa ◽  
Jari Härkönen ◽  
Sylvain M. Joffre ◽  
David M. Schultz ◽  
Ari Karppinen ◽  
...  

AbstractA new three-step idealized-profile method to estimate the mixing height from vertical profiles of ceilometer backscattering coefficient is developed to address the weaknesses found with such estimates that are based on the one-step idealized-profile method. This three-step idealized-profile method fits the backscattering coefficient profile of ceilometer measurements into an idealized scaled vertical profile of three error functions, thus having the potential to determine three aerosol layers (one for the surface layer, one for the mixing height, and one for the artificial layer caused by the weakened signal). This three-step idealized-profile method is tested with ceilometer and radiosounding data collected during the Helsinki Testbed campaign (2 January 2006–13 March 2007). Excluding cases with low aerosol concentration in the boundary layer, cases with clouds present, and cases with precipitation present, the resulting dataset consists of 97 simultaneous backscattering coefficient profiles and radiosoundings. The three-step method is compared with the one-step method and other commonly employed algorithms. A strong correlation (correlation coefficient r = 0.91) between the mixing heights as determined by the three-step method using ceilometer data and those determined from radiosoundings is an improvement over the same correlation using the one-step method (r = 0.28), as well as the other algorithms.


2006 ◽  
Vol 6 (9) ◽  
pp. 2671-2693 ◽  
Author(s):  
S. Wang ◽  
R. Ackermann ◽  
J. Stutz

Abstract. Nocturnal chemistry in the atmospheric boundary layer plays a key role in determining the initial chemical conditions for photochemistry during the following morning as well as influencing the budgets of O3 and NO2. Despite its importance, chemistry in the nocturnal boundary layer (NBL), especially in heavily polluted urban areas, has received little attention so far, which greatly limits the current understanding of the processes involved. In particular, the influence of vertical mixing on chemical processes gives rise to complex vertical profiles of various reactive trace gases and makes nocturnal chemistry altitude-dependent. The processing of pollutants is thus driven by a complicated, and not well quantified, interplay between chemistry and vertical mixing. In order to gain a better understanding of the altitude-dependent nocturnal chemistry in the polluted urban environment, a field study was carried out in the downtown area of Phoenix, AZ, in summer 2001. Vertical profiles of reactive species, such as O3, NO2, and NO3, were observed in the lowest 140 m of the troposphere throughout the night. The disappearance of these trace gas vertical gradients during the morning coincided with the morning transition from a stable NBL to a well-mixed convective layer. The vertical gradients of trace gas levels were found to be dependent on both surface NOx emission strength and the vertical stability of the NBL. The vertical gradients of Ox, the sum of O3 and NO2, were found to be much smaller than those of O3 and NO2, revealing the dominant role of NO emissions followed by the O3+NO reaction for the altitude-dependence of nocturnal chemistry in urban areas. Dry deposition, direct emissions, and other chemical production pathways of NO2 also play a role for the Ox distribution. Strong positive vertical gradients of NO3, that are predominantly determined by NO3 loss near the ground, were observed. The vertical profiles of NO3 and the calculated vertical profiles of its reservoir species (N2O5) confirm earlier model results suggesting complex vertical distributions of atmospheric denoxification processes during the night.


2015 ◽  
Vol 8 (4) ◽  
pp. 1657-1671 ◽  
Author(s):  
L. Haszpra ◽  
Z. Barcza ◽  
T. Haszpra ◽  
Zs. Pátkai ◽  
K. J. Davis

Abstract. Planetary boundary layer (PBL) CO2 mole fraction data are needed by transport models and carbon budget models as both input and reference for validation. The height of in situ CO2 mole fraction measurements is usually different from that of the model levels where the data are needed; data from short towers, in particular, are difficult to utilize in atmospheric models that do not simulate the surface layer well. Tall-tower CO2 mole fraction measurements observed at heights ranging from 10 to 115 m above ground level at a rural site in Hungary and regular airborne vertical mole fraction profile measurements (136 vertical profiles) above the tower allowed us to estimate how well a tower of a given height could estimate the CO2 mole fraction above the tower in the PBL. The statistical evaluation of the height-dependent bias between the real PBL CO2 mole fraction profile (measured by the aircraft) and the measurement at a given elevation above the ground was performed separately for the summer and winter half years to take into account the different dynamics of the lower troposphere and the different surface CO2 flux in the different seasons. The paper presents (1) how accurately the vertical distribution of CO2 in the PBL can be estimated from the measurements on the top of a tower of height H; (2) how tall of a tower would be needed for the satisfaction of different requirements on the accuracy of the estimation of the CO2 vertical distribution; (3) how accurate of a CO2 vertical distribution estimation can be expected from the existing towers; and (4) how much improvement can be achieved in the accuracy of the estimation of CO2 vertical distribution by applying the virtual tall-tower concept.


Sign in / Sign up

Export Citation Format

Share Document