scholarly journals On the origin of subvisible cirrus clouds in the tropical upper troposphere

2012 ◽  
Vol 12 (6) ◽  
pp. 14875-14926 ◽  
Author(s):  
M. Reverdy ◽  
V. Noel ◽  
H. Chepfer ◽  
B. Legras

Abstract. Spaceborne lidar observations have recently revealed a previously undetected significant population of SubVisible Cirrus (SVC). We show them to be colder than −74 °C, with an optical depth below 0.0015 on average. The formation and persistence over time of this new cloud population could be related to several atmospheric phenomena. In this paper, we investigate the importance of external processes in the creation of this cloud population, vs. the traditional ice cloud formation theory through convection. The importance of three scenarios in the formation of the global SVC population is investigated through different approaches that include comparisons with data imaging from several spaceborne instruments and back-trajectories that document the history and behavior of air masses leading to a point in time and space where subvisible cirrus were detected. In order simplify the study of cloud formation processes, we singled out SVC with coherent temperature histories (mean variance lower than 4 K) according to back-trajectories along 5, 10 or 15 days (respectively 58, 25 and 11% of SVC). Our results suggest that external processes, including local increases in liquid and hygroscopic aerosol concentration (either through biomass burning or volcanic injection forming sulfate-based aerosols in the troposphere or the stratosphere) have no noticeable short-term or mid-term impact on the SVC population. On the other hand, we find that ~60% of air masses interacted with convective activity in the days before they led to cloud formation and detection, which correspond to 37 to 65% of SVC. These results put forward the important influence of classical cloud formation processes compared to external influences in forming SVC. They support the view that the SVC population observed by CALIOP is an extension of the general upper tropospheric ice clouds population with its extreme thinness as its only differentiating factor.

2012 ◽  
Vol 12 (24) ◽  
pp. 12081-12101 ◽  
Author(s):  
M. Reverdy ◽  
V. Noel ◽  
H. Chepfer ◽  
B. Legras

Abstract. Spaceborne lidar observations have recently revealed a previously undetected significant population of Subvisible Cirrus (SVC). We show them to be colder than −74 °, with an optical depth below 0.0015 on average. The formation and persistence over time of this new cloud population could be related to several atmospheric phenomena. In this paper, we investigate if these clouds follow the same formation mechanisms as the general tropical cirrus population (including convection and in-situ ice nucleation), or if specific nucleation sites and trace species play a role in their formation. The importance of three scenarios in the formation of the global SVC population is investigated through different approaches that include comparisons with data imaging from several spaceborne instruments and back-trajectories that document the history and behavior of air masses leading to the point in time and space where subvisible cirrus were detected. In order to simplify the study of their formation, we singled out SVC with coherent temperature histories (mean variance lower than 4 K) according to back-trajectories along 5, 10 or 15 days (respectively 58, 25 and 11% of SVC). Our results suggest that external processes, including local increases in liquid and hygroscopic aerosol concentration (either through biomass burning or volcanic injection forming sulfate-based aerosols in the troposphere or the stratosphere) have very limited short-term or mid-term impact on the SVC population. On the other hand, we find that ~20% of air masses leading to SVC formation interacted with convective activity 5 days before they led to cloud formation and detection, a number that climbs to 60% over 15 days. SVC formation appears especially linked to convection over Africa and Central America, more so during JJA than DJF. These results support the view that the SVC population observed by CALIOP is an extension of the general upper tropospheric ice clouds population with its extreme thinness as its only differentiating factor.


2019 ◽  
Vol 76 (10) ◽  
pp. 3095-3113
Author(s):  
Amy Solomon ◽  
Matthew D. Shupe

Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes.


2011 ◽  
Vol 11 (16) ◽  
pp. 8363-8384 ◽  
Author(s):  
A. Protat ◽  
J. Delanoë ◽  
P. T. May ◽  
J. Haynes ◽  
C. Jakob ◽  
...  

Abstract. The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.


2018 ◽  
Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Paul Hartogh

Abstract. Carbon dioxide (CO2) ice clouds have been routinely observed in the middle atmosphere of Mars. However, there are still uncertainties concerning physical mechanisms that control their altitude, geographical, and seasonal distributions. Using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating a state-of-the-art whole atmosphere subgrid-scale gravity wave parameterization (Yiğit et al., 2008), we demonstrate that internal gravity waves generated by lower atmospheric weather processes have wide reaching impact on the Martian climate. Globally, GWs cool the upper atmosphere of Mars by ~10 % and facilitate high-altitude CO2 ice cloud formation. CO2 ice cloud seasonal variations in the mesosphere and the mesopause region appreciably coincide with the spatio-temporal variations of GW effects, providing insight into the observed distribution of clouds. Our results suggest that GW propagation and dissipation constitute a necessary physical mechanism for CO2 ice cloud formation in the Martian upper atmosphere during all seasons.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 374 ◽  
Author(s):  
Eliane Larroza ◽  
Philippe Keckhut ◽  
Jean-Luc Baray ◽  
Walter Nakaema ◽  
Hélène Vérèmes ◽  
...  

In this study, an air mass (containing a cirrus cloud) was detected by light detection and ranging (lidar) above São Paulo (Brazil) in June 2007 and tracked around the globe, thanks to Lagrangian calculations as well as ground-based and satellite observations. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were also used to provide locations of occurrence of cirrus around the globe and extract their respective macro physical parameters (altitude and temperature). An analysis of the air mass history based on Lagrangian trajectories reveals that water coming from the Equator is channelized through the southern subtropical jet for weeks. In this case, the back-trajectories showed that the cirrus cloud detected at São Paulo was a mixture of air masses from two different locations: (1) the active convective area located around the Equator, with transport into the upper troposphere that promotes cirrus cloud formation; and (2) the South Pacific Ocean, with transport that follows the subtropical jet stream (STJ). Air masses coming from equatorial convective regions are trapped by the jet, which contributes to maintaining the lifetime of the cirrus cloud for a few days. The cloud disappears near the African continent, due to a southern excursion and warmer temperatures, then reappears and is detected again by the lidar system in São Paulo after 12 days. The observed cloud is located at a similar altitude, revealing that sedimentation is small or compensated by radiative uplift.


2021 ◽  
Vol 21 (10) ◽  
pp. 7947-7961
Author(s):  
Francesco Cairo ◽  
Mauro De Muro ◽  
Marcel Snels ◽  
Luca Di Liberto ◽  
Silvia Bucci ◽  
...  

Abstract. A polarization diversity elastic backscatter lidar was deployed on the equatorial island of Palau in February and March 2016 in the framework of the EU StratoClim project. The system operated unattended in the Palau Atmosferic Observatory from 15 February to 25 March 2016 during the nighttime. Each lidar profile extends from the ground to 30 km height. Here, the dataset is presented and discussed in terms of the temperature structure of the upper troposphere–lower stratosphere (UTLS) obtained from co-located radiosoundings. The cold-point tropopause (CPT) was higher than 17 km. During the campaign, several high-altitude clouds were observed, peaking approximately 3 km below the CPT. Their occurrence was associated with cold anomalies in the upper troposphere (UT). Conversely, when warm UT anomalies occurred, the presence of cirrus was restricted to a 5 km thick layer centred 5 km below the CPT. Thin and subvisible cirrus (SVC) were frequently detected close to the CPT. The particle depolarization ratios of these cirrus were generally lower than the values detected in the UT clouds. CPT cirrus occurrence showed a correlation with cold anomalies likely triggered by stratospheric wave activity penetrating the UT. The back-trajectories study revealed a thermal and convective history compatible with the convective outflow formation for most of the cirrus clouds, suggesting that the majority of air masses related to the clouds had encountered convection in the past and had reached the minimum temperature during its transport in less than 48 h before the observation. A subset of SVC with low depolarization and no sign of significative recent uplifting may have originated in situ.


2010 ◽  
Vol 10 (8) ◽  
pp. 20069-20124
Author(s):  
A. Protat ◽  
J. Delanoë ◽  
P. T. May ◽  
J. Haynes ◽  
C. Jakob ◽  
...  

Abstract. The statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness, cloud fraction as derived considering a typical large-scale model grid box), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden–Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The rationale for characterizing this variability is to provide an observational basis to which model outputs can be compared for the different regimes or large-scale characteristics and from which new parameterizations accounting for the large-scale context can be derived. The mean vertical variability of ice cloud occurrence and microphysical properties is large (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98% of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). Our results also indicate that, at least in the northern Australian region, the upper part of the troposphere can be split into three distinct layers characterized by different statistically-dominant microphysical processes. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is found to be large, producing mean differences of up to a factor of 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes, a factor of 3 to 4 for the ISCCP regimes and the MJO phases, and mean differences of a factor of 2 typically in all microphysical properties analysed in the present paper between large-scale atmospheric regimes or MJO phases. Large differences in occurrence (up to 60–80%) are also found in the main patterns of the cloud fraction distribution of ice clouds (fractions smaller than 0.3 and larger than 0.9). Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (almost no detectable diurnal cycle) to values in excess of 2.0 (very large diurnal amplitude).


2020 ◽  
Author(s):  
Honglin Pan ◽  
Xinghua Yang ◽  
Kanike Raghavendra Kumar ◽  
Ali Mamtimin ◽  
Minzhong Wang ◽  
...  

Abstract. The present study analyzes the climatology of spatiotemporal and vertical distribution characteristics of ice clouds, including the ice cloud fraction (ICF), ice water content (IWC), and ice cloud optical depth (ICOD) for three ice cloud categories (sub-visual, thin, and opaque). Newly released level 3 ice cloud data observed from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) instrument is used for the period 2007–2016. The results revealed that the global means of ICF and IWC were found to be ~ 10 % and ~ 0.0017 g/m3, respectively. On the other hand, the latitude-and-altitude mean distributions of ICF and IWC were found unimodal in all the seasons. During summer, the peak in the ice cloud formation occurred over the equatorial region of the northern hemisphere (NH) which extended further to higher altitudes over the NH equator than the southern hemisphere (SH). However, the opposite was observed in the cold season. This is mainly related to the strong convective activities in tropical areas, variation in the distribution of land and ocean between NH and SH, and the seasonal migration of the inter-tropical convergence zone (ITCZ). Furthermore, the ice clouds detected during the nighttime in summer occurred at high frequency over the SH high-latitude regions, owing to the polar stratospheric clouds (PSCs). The occurrence of sub-visual ice clouds (ICOD 


2018 ◽  
Vol 36 (6) ◽  
pp. 1631-1646 ◽  
Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Paul Hartogh

Abstract. Carbon dioxide (CO2) ice clouds have been routinely observed in the middle atmosphere of Mars. However, there are still uncertainties concerning physical mechanisms that control their altitude, geographical, and seasonal distributions. Using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating a state-of-the-art whole atmosphere subgrid-scale gravity wave parameterization (Yiğit et al., 2008), we demonstrate that internal gravity waves generated by lower atmospheric weather processes have a wide-reaching impact on the Martian climate. Globally, GWs cool the upper atmosphere of Mars by ∼10 % and facilitate high-altitude CO2 ice cloud formation. CO2 ice cloud seasonal variations in the mesosphere and the mesopause region appreciably coincide with the spatio-temporal variations of GW effects, providing insight into the observed distribution of clouds. Our results suggest that GW propagation and dissipation constitute a necessary physical mechanism for CO2 ice cloud formation in the Martian upper atmosphere during all seasons.


2006 ◽  
Vol 45 (4) ◽  
pp. 537-555 ◽  
Author(s):  
M. Chiriaco ◽  
H. Chepfer ◽  
V. Noel ◽  
M. Haeffelin ◽  
P. Drobinski

Abstract To improve the estimation of the infrared radiances in cirrus clouds, one needs to consider the vertical inhomogeneities of the cloud properties. The position of the maximum of absorption within an ice cloud is potentially important to the improvement of the split-window techniques for retrieving particle size and for understanding the radiative effect of the cloud in the infrared spectrum. Current remote sensing techniques used for inferring ice clouds hardly reach the level of accuracy required to resolve the vertical inhomogeneities of a cloud and to determine the position of absorption. This study explores the possibility of retrieving the vertical structures of ice clouds by combining data from two lidar measurements acquired at the wavelengths of 532 nm and 10.6 μm. A method is proposed to retrieve the variability of ice crystal absorption efficiency at 10.6 μm, the particle concentration weighted by the crystal area, and the attenuation by absorption at 10.6 μm. The method is tested against observations collected at Site Instrumental de Recherche en Télédétection Atmosphérique (SIRTA) in Palaiseau, France. Observations and simulations both show that lidar observations collected simultaneously at those two wavelengths can be used to determine the level within the ice cloud where maximum attenuation of infrared radiation occurs. The maximum attenuation may occur near the cloud base or the cloud top, depending on the case studied.


Sign in / Sign up

Export Citation Format

Share Document