scholarly journals Influence of transport and mixing in autumn on stratospheric ozone variability over the Arctic in early winter

2012 ◽  
Vol 12 (6) ◽  
pp. 15083-15113
Author(s):  
D. Blessmann ◽  
I. Wohltmann ◽  
M. Rex

Abstract. Early winter ozone mixing ratios in the Arctic middle stratosphere show a fair amount of interannual variability. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the Chemistry and Transport Model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are related to a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence. As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from August to November. In the lower stratosphere, this quantity correlates well with both the ozone amount in early winter and the origin of air enclosed in the vortex.

2012 ◽  
Vol 12 (17) ◽  
pp. 7921-7930
Author(s):  
D. Blessmann ◽  
I. Wohltmann ◽  
M. Rex

Abstract. Early winter ozone mixing ratios in the Arctic middle stratosphere show an interannual variability of about 10%. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the chemistry and transport model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are correlated with a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence (in a Lagrangian sense). As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from September to November. In the lower stratosphere, this quantity correlates well with the origin of air enclosed in the vortex and reasonably well with the ozone amount in early winter.


2013 ◽  
Vol 13 (21) ◽  
pp. 10859-10871 ◽  
Author(s):  
C. Kalicinsky ◽  
J.-U. Grooß ◽  
G. Günther ◽  
J. Ungermann ◽  
J. Blank ◽  
...  

Abstract. The CRISTA-NF (Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers) instrument is an airborne infrared limb sounder operated aboard the Russian research aircraft M55-Geophysica. The instrument successfully participated in a large Arctic aircraft campaign within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) project in Kiruna (Sweden) from January to March 2010. This paper concentrates on the measurements taken during one flight of the campaign, which took place on 2 March in the vicinity of the polar vortex. We present two-dimensional cross-sections of derived volume mixing ratios for the trace gases CFC-11, O3, and ClONO2 with an unprecedented vertical resolution of about 500 to 600 m for a large part of the observed altitude range (≈ 6–19 km) and a dense horizontal sampling along flight direction of ≈ 15 km. The trace gas distributions show several structures, for example a part of the polar vortex and a vortex filament, which can be identified by means of O3–CFC-11 tracer–tracer correlations. The observations made during this flight are interpreted using the chemistry and transport model CLaMS (Chemical Lagrangian Model of the Stratosphere). Comparisons of the observations with the model results are used to assess the performance of the model with respect to advection, mixing, and the chemistry in the polar vortex. These comparisons confirm the capability of CLaMS to reproduce even very small-scale structures in the atmosphere, which partly have a vertical extent of only 1 km. Based on the good agreement between simulation and observation, we use artificial (passive) tracers, which represent different air mass origins (e.g. vortex, tropics), to further analyse the CRISTA-NF observations in terms of the composition of air mass origins. These passive tracers clearly illustrate the observation of filamentary structures that include tropical air masses. A characteristic of the Arctic winter 2009/10 was a sudden stratospheric warming in December that led to a split of the polar vortex. The vortex re-established at the end of December. Our passive tracer simulations suggest that large parts of the re-established vortex consisted to about 45% of high- and mid-latitude air.


2013 ◽  
Vol 13 (4) ◽  
pp. 10463-10498 ◽  
Author(s):  
C. Kalicinsky ◽  
J.-U. Grooß ◽  
G. Günther ◽  
J. Ungermann ◽  
J. Blank ◽  
...  

Abstract. The CRISTA-NF (Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers) instrument is an airborne infrared limb sounder operated aboard the Russian research aircraft M55-Geophysica. The instrument successfully participated in a large Arctic aircraft campaign within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) project from January to March 2010 in Kiruna, Sweden. This paper concentrates on the measurements during one flight of the campaign, which took place on 2 March in the vicinity of the polar vortex. We present two-dimensional cross-sections of volume mixing ratios for the trace gases CFC-11, O3, and ClONO2 with an unprecedented vertical resolution of about 500 to 600 m for a large part of the observed altitude range and a dense horizontal sampling along flight direction of ≈ 15 km. The trace gas distributions show several structures like the polar vortex and filaments composed of air masses of different origin. The situation during the analysed flight is simulated by the chemistry and transport model CLaMS (Chemical Lagrangian Model of the Stratosphere) and compared with the measurements to assess the performance of the model with respect to advection, mixing, and the chemistry in the polar vortex. These comparisons confirm the capability of CLaMS to reproduce even very small-scale structures in the atmosphere. Based on the good agreement between simulation and observation, we use a model concept utilising artificial tracers to further analyse the CRISTA-NF observations in terms of air mass origin. A characteristic of the Arctic winter 2009/10 was a sudden stratospheric warming in early December that led to a split of the polar vortex. The vortex re-established at the end of December. Our passive tracer simulations suggest that large parts of the re-established vortex consisted to about 45% of high- and mid-latitude air.


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2010 ◽  
Vol 10 (20) ◽  
pp. 9915-9930 ◽  
Author(s):  
J. Kuttippurath ◽  
S. Godin-Beekmann ◽  
F. Lefèvre ◽  
F. Goutail

Abstract. The polar stratospheric ozone loss during the Arctic winters 2004/2005–2009/2010 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Aura Microwave Limb Sounder (MLS), by applying the passive tracer technique. The winter 2004/2005 shows the coldest temperatures, highest area of polar stratospheric clouds and strongest chlorine activation in 2004/2005–2009/2010. The ozone loss diagnosed from both simulations and measurements inside the polar vortex at 475 K ranges from 0.7 ppmv in the warm winter 2005/2006 to 1.5–1.7 ppmv in the cold winter 2004/2005. Halogenated (chlorine and bromine) catalytic cycles contribute to 75–90% of the ozone loss at this level. At 675 K the lowest loss of 0.3–0.5 ppmv is computed in 2008/2009, and the highest loss of 1.3 ppmv is estimated in 2006/2007 by the model and in 2004/2005 by MLS. Most of the ozone loss (60–75%) at this level results from nitrogen catalytic cycles rather than halogen cycles. At both 475 and 675 K levels the simulated ozone and ozone loss evolution inside the vortex is in reasonably good agreement with the MLS observations. The ozone partial column loss in 350–850 K deduced from the model calculations at the MLS sampling locations inside the polar vortex ranges between 43 DU in 2005/2006 and 109 DU in 2004/2005, while those derived from the MLS observations range between 26 DU and 115 DU for the same winters. The partial column ozone depletion derived in that vertical range is larger than that estimated in 350–550 K by 19±7 DU on average, mainly due to NOx chemistry. The column ozone loss estimates from both Mimosa-Chim and MLS in 350–850 K are generally in good agreement with those derived from ground-based ultraviolet-visible spectrometer total ozone observations for the respective winters, except in 2010.


2012 ◽  
Vol 12 (8) ◽  
pp. 20033-20072
Author(s):  
C. Adams ◽  
K. Strong ◽  
X. Zhao ◽  
A. E. Bourassa ◽  
W. H. Daffer ◽  
...  

Abstract. In spring 2011, the Arctic polar vortex was stronger than in any other year on record. As the polar vortex started to break up in April, ozone and NO2 columns were measured with UV-visible spectrometers above the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05° N, 86.42° W) using the differential optical absorption spectroscopy (DOAS) technique. These ground-based column measurements were complemented by Ozone Monitoring Instrument (OMI) and Optical Spectrograph and Infra-Red Imager System (OSIRIS) satellite measurements, Global Modeling Initiative (GMI) simulations, and dynamical parameters. On 8 April 2011, NO2 columns above PEARL from the DOAS, OMI, and GMI datasets were approximately twice as large as in previous years. On this day, temperatures and ozone volume mixing ratios above Eureka were high, suggesting enhanced chemical production of NO2 from NO. Additionally, GMI NOx and N2O fields suggest that downward transport along the vortex edge and horizontal transport from lower latitudes also contributed to the enhanced NO2. The anticyclone that transported lower-latitude NOx above PEARL became frozen-in and persisted in dynamical and GMI N2O fields until the end of the measurement period on 31 May 2011. Ozone isolated within this frozen-in anticyclone (FrIAC) in the middle stratosphere was depleted due to reactions with the enhanced NOx. Ozone loss was calculated using the passive tracer technique, with passive ozone profiles from the Lagrangian Chemistry and Transport Model, ATLAS. At 600 K, ozone losses between 1 December 2010 and 20 May 2011 reached 4.2 parts per million by volume (ppmv) (58%) and 4.4 ppmv (61%), when calculated using GMI and OSIRIS ozone profiles, respectively. This middle-stratosphere gas-phase ozone loss led to a more rapid decrease in ozone column amounts in April/May 2011 compared with previous years. Ground-based, OMI, and GMI ozone total columns within the FrIAC all decreased by more than 100 DU from 15 April to 20 May. Two lows in the ozone columns were also investigated and were attributed to a vortex remnant passing above Eureka at ~500 K on 12/13 May and an ozone mini-hole on 22/23 May.


2012 ◽  
Vol 12 (11) ◽  
pp. 4817-4823 ◽  
Author(s):  
D. Blessmann ◽  
I. Wohltmann ◽  
R. Lehmann ◽  
M. Rex

Abstract. Dynamical processes during the formation phase of the Arctic stratospheric vortex in autumn (from September to December) can introduce considerable interannual variability in the amount of ozone that is incorporated into the vortex. Chemistry in autumn tends to remove part of this variability because ozone relaxes towards equilibrium. As a quantitative measure of how important dynamical variability during vortex formation is for the winter ozone abundances above the Arctic we analyze which fraction of an ozone anomaly induced during vortex formation persists until early winter (3 January). The work is based on the Lagrangian Chemistry Transport Model ATLAS. In a case study, model runs for the winter 1999–2000 are used to assess the fate of an ozone anomaly artificially introduced during the vortex formation phase on 16 September. In addition, runs with reduced resolution explore the sensitivity of the results to interannual changes in transport, mixing, temperatures and NOx. The runs provide information about the persistence of the induced ozone anomaly as a function of time, potential temperature and latitude. The induced ozone anomaly survives longer inside the polar vortex than outside the vortex. Half of the initial perturbation survives until 3 January at 550 K inside the polar vortex, with a rapid fall off towards higher levels, mainly due to NOx induced chemistry. Above 750 K the signal falls to values below 0.5%. Hence, dynamically induced ozone variability from the early vortex formation phase cannot significantly contribute to early winter variability above 750 K. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90% at 450 K. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in early winter.


2013 ◽  
Vol 13 (2) ◽  
pp. 611-624 ◽  
Author(s):  
C. Adams ◽  
K. Strong ◽  
X. Zhao ◽  
A. E. Bourassa ◽  
W. H. Daffer ◽  
...  

Abstract. In spring 2011, the Arctic polar vortex was stronger than in any other year on record. As the polar vortex started to break up in April, ozone and NO2 columns were measured with UV-visible spectrometers above the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05° N, 86.42° W) using the differential optical absorption spectroscopy (DOAS) technique. These ground-based column measurements were complemented by Ozone Monitoring Instrument (OMI) and Optical Spectrograph and Infra-Red Imager System (OSIRIS) satellite measurements, Global Modeling Initiative (GMI) simulations, and meteorological quantities. On 8 April 2011, NO2 columns above PEARL from the DOAS, OMI, and GMI datasets were approximately twice as large as in previous years. On this day, temperatures and ozone volume mixing ratios above Eureka were high, suggesting enhanced chemical production of NO2 from NO. Additionally, GMI NOx (NO + NO2) and N2O fields suggest that downward transport along the vortex edge and horizontal transport from lower latitudes also contributed to the enhanced NO2. The anticyclone that transported lower-latitude NOx above PEARL became frozen-in and persisted in dynamical and GMI N2O fields until the end of the measurement period on 31 May 2011. Ozone isolated within this frozen-in anticyclone (FrIAC) in the middle stratosphere was lost due to reactions with the enhanced NOx. Below the FrIAC (from the tropopause to 700 K), NOx driven ozone loss above Eureka was larger than in previous years, according to GMI monthly average ozone loss rates. Using the passive tracer technique, with passive ozone profiles from the Lagrangian Chemistry and Transport Model, ATLAS, ozone losses since 1 December 2010 were calculated at 600 K. In the air mass that was above Eureka on 20 May 2011, ozone losses reached 4.2 parts per million by volume (ppmv) (58%) and 4.4 ppmv (61%), when calculated using GMI and OSIRIS ozone profiles, respectively. This gas-phase ozone loss led to a more rapid decrease in ozone column amounts above Eureka in April/May 2011 compared with previous years. Ground-based, OMI, and GMI ozone total columns all decreased by more than 100 DU from 15 April to 20 May. Two lows in the ozone columns were also investigated and were attributed to a vortex remnant passing above Eureka at ~500 K on 12/13 May and an ozone mini-hole on 22/23 May.


2010 ◽  
Vol 10 (6) ◽  
pp. 14675-14711
Author(s):  
J. Kuttippurath ◽  
S. Godin-Beekmann ◽  
F. Lefèvre ◽  
F. Goutail

Abstract. The stratospheric ozone loss during the Arctic winters 2004/05–2009/10 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Microwave Limb Sounder (MLS) on Aura by the passive tracer technique. The winter 2004/05 was the coldest of the series with strongest chlorine activation. The ozone loss diagnosed from both model and measurements inside the polar vortex at 475 K ranges from ~1–0.7 ppmv in the warm winter 2005/06 to 1.7 ppmv in the cold winter 2004/05. Halogenated (chlorine and bromine) catalytic cycles contribute to 75–90% of the accumulated ozone loss at this level. At 675 K the lowest loss of ~0.4 ppmv is computed in 2008/09 from both simulations and observations and, the highest loss is estimated in 2006/07 by the model (1.3 ppmv) and in 2004/05 by MLS (1.5 ppmv). Most of the ozone loss (60–75%) at this level results from cycles catalysed by nitrogen oxides (NO and NO2) rather than halogens. At both 475 and 675 K levels the simulated ozone evolution inside the polar vortex is in reasonably good agreement with the observations. The ozone total column loss deduced from the model calculations at the MLS sampling locations inside the vortex ranges between 40 DU in 2005/06 and 94 DU in 2004/05, while that derived from observations ranges between 37 DU and 111 DU in the same winters. These estimates from both Mimosa-Chim and MLS are in general good agreement with those from the ground-based UV-VIS (ultra violet–visible) ozone loss analyses for the respective winters.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


Sign in / Sign up

Export Citation Format

Share Document