scholarly journals Thunderstorms and upper troposphere chemistry during the early stages of the 2006 North American Monsoon

2012 ◽  
Vol 12 (7) ◽  
pp. 16407-16455 ◽  
Author(s):  
M. C. Barth ◽  
J. Lee ◽  
A. Hodzic ◽  
G. Pfister ◽  
W. C. Skamarock ◽  
...  

Abstract. In this study, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is applied at 4 km horizontal grid spacing to study the meteorology and chemistry over the continental US and Northern Mexico region for the 15 July to 7 August 2006 period, which coincides with the early stages of the North American Monsoon. Evaluation of model results shows that WRF-Chem reasonably represents the large-scale meteorology and strong convective storms, but tends to overestimate weak convection. In the upper troposphere, the WRF-Chem model predicts ozone and carbon monoxide (CO) to within 10–20% of aircraft and sonde measurements. However, the frequency distribution from satellite data indicates that WRF-Chem is lofting too much CO from the boundary layer (BL). Because ozone mixing ratios agree well with these same satellite data, it suggests that chemical production of O3 in the model is overpredicted and compensates for the excess convective lofting of BL air. Analysis of different geographic regions (West Coast, Rocky Mountains, Central Plains, Midwest, and Gulf Coast) reveals that much of the convective transport occurs in the Rocky Mountains, while much of the UT ozone chemical production occurs over the Gulf Coast and Midwest regions where both CO and volatile organic compounds (VOCs) are abundant in the upper troposphere and promote the production of peroxy radicals. In all regions most of the ozone chemical production occurs within 24 h of the air being lofted from the boundary layer. In addition, analysis of the anticyclone and adjacent air indicates that ozone mixing ratios within the anticyclone region associated with the North American Monsoon and just outside the anticyclone are similar. Increases of O3 within the anticyclone are strongly coincident with entrainment of stratospheric air into the anticyclone, but also are from in situ O3 chemical production. In situ O3 production is up to 17% greater within the anticyclone than just outside the anticyclone when the anticyclone is over the Southern US indicating that the enhancement of O3 is most pronounced over regions with abundant VOCs.

2012 ◽  
Vol 12 (22) ◽  
pp. 11003-11026 ◽  
Author(s):  
M. C. Barth ◽  
J. Lee ◽  
A. Hodzic ◽  
G. Pfister ◽  
W. C. Skamarock ◽  
...  

Abstract. To study the meteorology and chemistry that is associated with the early stages of the North American Monsoon, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is applied for the first time at high resolution (4 km grid spacing, allowing for explicit representation of convection) over a large region (continental US and northern Mexico) for a multi-week (15 July to 7 August 2006) integration. Evaluation of model results shows that WRF-Chem reasonably represents the large-scale meteorology and strong convective storms, but tends to overestimate weak convection. In the upper troposphere, the WRF-Chem model predicts ozone (O3) and carbon monoxide (CO) to within 10–20% of aircraft and sonde measurements. Comparison of UT O3 and CO frequency distributions between WRF-Chem and satellite data indicates that WRF-Chem is lofting CO too frequently from the boundary layer (BL). This excessive lofting should also cause biases in the WRF-Chem ozone frequency distribution; however it agrees well with satellite data suggesting that either the chemical production of O3 in the model is overpredicted or there is too much stratosphere to troposphere transport in the model. Analysis of different geographic regions (West Coast, Rocky Mountains, Central Plains, Midwest, and Gulf Coast) reveals that much of the convective transport occurs in the Rocky Mountains, while much of the UT ozone chemical production occurs over the Gulf Coast and Midwest regions where both CO and volatile organic compounds (VOCs) are abundant in the upper troposphere and promote the production of peroxy radicals. In all regions most of the ozone chemical production occurs within 24 h of the air being lofted from the boundary layer. In addition, analysis of the anticyclone and adjacent air indicates that ozone mixing ratios within the anticyclone region associated with the North American Monsoon and just outside the anticyclone are similar. Increases of O3 within the anticyclone are strongly coincident with entrainment of stratospheric air into the anticyclone, but also are from in situ O3 chemical production. In situ O3 production is up to 17% greater within the anticyclone than just outside the anticyclone when the anticyclone is over the southern US indicating that the enhancement of O3 is most pronounced over regions with abundant VOCs.


2021 ◽  
Author(s):  
Valentin Lauther ◽  
Johannes Wintel ◽  
Emil Gerhardt ◽  
Andrea Rau ◽  
Peter Hoor ◽  
...  

<p>Chlorinated very short-lived substances (Cl-VSLS) are not controlled by the Montreal Protocol but the recent emission increase of the Cl-VSLS CH<sub>2</sub>Cl<sub>2</sub> (Dichloromethane) and CHCl<sub>3</sub> (Chloroform) is believed to significantly increase the stratospheric chlorine loading from VSLS. Provided efficient transport of Cl-VSLS from the source region into the stratosphere further emission increases could ultimately even cause a significant delay of the predicted recovery date of the ozone layer to pre-1980 values. During the WISE (Wave-driven ISentropic Exchange) campaign in autumn 2017 excessive probing of the UTLS (upper troposphere lower stratosphere) region above Western Europe and the Atlantic Ocean was conducted from aboard the HALO (High Altitude and Long range) research aircraft. We use real-time in situ WISE measurements of CH<sub>2</sub>Cl<sub>2</sub> and CHCl<sub>3</sub> from HAGAR-V (High Altitude Gas AnalyzeR – 5 channel version) in correlation with N<sub>2</sub>O from UMAQS (University of Mainz Airborne QCL Spectrometer), as well as CLaMS (Chemical Lagrangian Model of the Stratosphere) global 3-dimensional simulations of air mass origin tracers and backward trajectories to identify the most efficient transport mechanisms for Cl-VSLS entering the LS region in northern hemispheric summer.</p><p>The WISE measurements reveal two distinct transport pathways into the UTLS region of particularly CH<sub>2</sub>Cl<sub>2</sub>-rich and CH<sub>2</sub>Cl<sub>2</sub>-poor air. CH<sub>2</sub>Cl<sub>2</sub>-rich air could be identified to be transported by the Asian summer monsoon within about 4-10 weeks from its source regions in Asia into the stratosphere above the Atlantic Ocean at around 380 K and above. CH<sub>2</sub>Cl<sub>2</sub>-poor air could be identified to be mainly uplifted to potential temperatures of about 365 K by the North American monsoon above the region of Central America with transport times of only 2-5 weeks. In addition, we could link backward trajectories of CH<sub>2</sub>Cl<sub>2</sub>-poor air in the LS region to be uplifted by the category 5 hurricane Maria in September 2017. Based on all analyzed WISE measurements, we found that almost all young (transport time < 4 months) air masses were uplifted either above Asia or above Central America, emphasizing not only the impact of the Asian summer monsoon on the stratospheric tracer distribution but also that of the North American monsoon and hurricanes.</p><p>The measurements of both CH<sub>2</sub>Cl<sub>2</sub> and CHCl<sub>3</sub> show the lowest stratospheric mixing ratios originating in the region of Central America and enhanced mixing ratios from Asia (enhancements > 100 % and > 50 %, respectively). However, the source distribution of CHCl<sub>3</sub> is much less clear than that of CH<sub>2</sub>Cl<sub>2</sub> and inconspicuous CH<sub>2</sub>Cl<sub>2</sub> measurements can also contain enhanced CHCl<sub>3</sub> mixing ratios. Nevertheless, the anthropogenic impact on CHCl<sub>3</sub> -rich air from Asia is clearly visible in the measurements and we believe it is likely that a future increase of Asian CHCl<sub>3</sub> emissions could lead to similarly large stratospheric enhancements as already observed for CH<sub>2</sub>Cl<sub>2</sub>. Consequently, this would further increase ozone depletion from stratospheric chlorine deposition of VSLS.</p>


2008 ◽  
Vol 8 (7) ◽  
pp. 1989-2005 ◽  
Author(s):  
S. Y. Kim ◽  
R. Talbot ◽  
H. Mao ◽  
D. Blake ◽  
S. Vay ◽  
...  

Abstract. A case of continental outflow from the United States (US) was examined using airborne measurements from NASA DC-8 flight 13 during the Intercontinental Chemical Transport Experiment – North America (INTEX-NA). Mixing ratios of methane (CH4) and carbon monoxide (CO) at 8–11 km altitude over the North Atlantic were elevated to 1843 ppbv and 134 ppbv respectively, while those of carbon dioxide (CO2) and carbonyl sulfide (COS) were reduced to 372.4 ppmv and 411 pptv respectively. In this region, urban and industrial influences were evidenced by elevated mixing ratios and good linear relationships between urban and industrial tracers compared to North Atlantic background air. Moreover, low mixing ratios and a good correlation between COS and CO2 showed a fingerprint of terrestrial uptake and minimal dilution during rapid transport over a 1–2 day time period. Analysis of synoptic conditions, backward trajectories, and photochemical aging estimates based on C3H8/C2H6 strongly suggested that elevated anthropogenic tracers in the upper troposphere of the flight region were the result of transport via convection and warm conveyor belt (WCB) uplifting of boundary layer air over the southeastern US. This mechanism is supported by the similar slope values of linear correlations between long-lived (months) anthropogenic tracers (e.g., C2Cl4 and CHCl3) from the flight region and the planetary boundary layer in the southeastern US. In addition, the aircraft measurements suggest that outflow from the US augmented the entire tropospheric column at mid-latitudes over the North Atlantic. Overall, the flight 13 data demonstrate a pervasive impact of US anthropogenic emissions on the troposphere over the North Atlantic.


2021 ◽  
Author(s):  
Valentin Lauther ◽  
Bärbel Vogel ◽  
Johannes Wintel ◽  
Andrea Rau ◽  
Peter Hoor ◽  
...  

Abstract. Efficient transport pathways for ozone depleting very short-lived substances (VSLS) from their source regions into the stratosphere are a matter of current scientific debate, however they have yet to be fully identified on an observational basis. Understanding the increasing impact of chlorine containing VSLS (Cl-VSLS) on stratospheric ozone depletion is important in order to validate and improve model simulations and future predictions. We report on the first transport study using airborne in situ measurements of the Cl-VSLS dichloromethane (CH2Cl2) and trichloromethane (chloroform, CHCl3) to derive a detailed description of the two most efficient and fast transport pathways from (sub-)tropical source regions into the extratropical lower stratosphere (Ex-LS) in northern hemisphere (NH) late summer. The Cl-VSLS measurements were obtained in the upper troposphere and lower stratosphere (UTLS) above Western Europe and the mid latitude Atlantic Ocean in the frame of the WISE (Wave-driven ISentropic Exchange) aircraft campaign in autumn 2017 and are combined with the results from a three-dimensional simulation of a Lagrangian transport model as well as back-trajectory calculations. Compared to background measurements of similar age we find up to 150 % enhanced CH2Cl2 and up to 100 % enhanced CHCl3 mixing ratios in the Ex-LS. We link the measurements of enhanced mixing ratios to emissions in the region of southern and eastern Asia. Transport from this area to the Ex-LS at potential temperatures in the range of 370–400 K takes about 5–10 weeks via the Asian summer monsoon anticyclone (ASMA). Our measurements suggest anthropogenic sources to be the cause of these strongly elevated Cl-VSLS concentrations observed at the top of the lowermost stratosphere (LMS). A faster transport pathway into the Ex-LS is derived from particularly low CH2Cl2 and CHCl3 mixing ratios in the UTLS. These low mixing ratios reflect weak emission sources and a local seasonal minimum of both species in the boundary layer of Central America and the tropical Atlantic. We show that air masses uplifted by hurricanes, the North American monsoon, and general convection above Central America into the tropical tropopause layer to potential temperatures of about 360–370 K are transported isentropically within 1–5 weeks into the Ex-LS. This transport pathway linked to the North American monsoon mainly impacts the middle and lower part of the LMS with particularly low CH2Cl2 and CHCl3 mixing ratios. In a case study, we specifically analyze air samples directly linked to the uplift by the category 5 hurricane Maria that occurred during October 2017 above the Atlantic Ocean. Regionally differing CHCl3 : CH2Cl2 emission ratios derived from our UTLS measurements suggest a clear similarity between CHCl3 and CH2Cl2 when emitted by anthropogenic sources and differences between the two species mainly caused by additional, likely biogenic, CHCl3 sources. Overall, the transport of strongly enhanced CH2Cl2 and CHCl3 mixing ratios from southern and eastern Asia via the ASMA is the main factor for increasing the chlorine loading from the analyzed VSLS in the Ex-LS during NH late summer. Thus, further increases in Asian CH2Cl2 and CHCl3 emissions, as frequently reported in recent years, will further increase the impact of Cl-VSLS on stratospheric ozone depletion.


2007 ◽  
Vol 20 (9) ◽  
pp. 1693-1712 ◽  
Author(s):  
Christopher R. Williams ◽  
Allen B. White ◽  
Kenneth S. Gage ◽  
F. Martin Ralph

Abstract In support of the 2004 North American Monsoon Experiment (NAME) field campaign, NOAA established and maintained a field site about 100 km north of Mazatlán, Mexico, consisting of wind profilers, precipitation profilers, surface upward–downward-looking radiometers, and a 10-m meteorological tower to observe the environment within the North American monsoon. Three objectives of this NOAA project are discussed in this paper: 1) to observe the vertical structure of precipitating cloud systems as they passed over the NOAA profiler site, 2) to estimate the vertical air motion and the raindrop size distribution from near the surface to just below the melting layer, and 3) to better understand the microphysical processes associated with stratiform rain containing well-defined radar bright bands. To provide a climatological context for the profiler observations at the field site, the profiler reflectivity distributions were compared with Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity distributions from the 2004 season over the NAME domain as well as from the 1998–2005 seasons. This analysis places the NAME 2004 observations into the context of other monsoon seasons. It also provides a basis for evaluating the representativeness of the structure of the precipitation systems sampled at this location. The number of rain events observed by the TRMM PR is dependent on geography; the land region, which includes portions of the Sierra Madre Occidental, has more events than the coast and gulf regions. Conversely, from this study it is found that the frequencies of occurrence of stratiform rain and reflectivity profiles with radar bright bands are mostly independent of region. The analysis also revealed that the reflectivity distribution at each height has more year-to-year variability than region-to-region variability. These findings suggest that in cases with a well-defined bright band, the vertical profile of the reflectivity relative to the height of the bright band is similar over the gulf, coast, and land regions.


2009 ◽  
Vol 9 (4) ◽  
pp. 1303-1323 ◽  
Author(s):  
D. D. Parrish ◽  
D. B. Millet ◽  
A. H. Goldstein

Abstract. An effective method is presented for determining the ozone (O3) mixing ratio in the onshore flow of marine air at the North American west coast. By combining the data available from all marine boundary layer (MBL) sites with simultaneous wind data, decadal temporal trends of MBL O3 in all seasons are established with high precision. The average springtime temporal trend over the past two decades is 0.46 ppbv/yr with a 95% confidence limit of 0.13 ppbv/yr, and statistically significant trends are found for all seasons except autumn, which does have a significantly smaller trend than other seasons. The average trend in mean annual ozone is 0.34±0.09 ppbv/yr. These decadal trends at the North American west coast present a striking comparison and contrast with the trends reported for the European west coast at Mace Head, Ireland. The trends in the winter, spring and summer seasons compare well at the two locations, while the Mace Head trend is significantly greater in autumn. Even though the trends are similar, the absolute O3 mixing ratios differ markedly, with the marine air arriving at Europe in all seasons containing 7±2 ppbv higher ozone than marine air arriving at North America. Further, the ozone mixing ratios at the North American west coast show no indication of stabilizing as has been reported for Mace Head. In a larger historical context the background boundary layer O3 mixing ratios over the 130 years covered by available data have increased substantially (by a factor of two to three), and this increase continues at present, at least in the MBL of the Pacific coast region of North America. The reproduction of the increasing trends in MBL O3 over the past two decades, as well as the difference in the O3 mixing ratios between the two coastal regions will present a significant challenge for global chemical transport models. Further, the ability of the models to at least semi-quantitatively reproduce the longer-term, historical trends may an even greater challenge.


2007 ◽  
Vol 7 (6) ◽  
pp. 17367-17400
Author(s):  
S. Y. Kim ◽  
R. Talbot ◽  
H. Mao ◽  
D. Blake ◽  
S. Vay ◽  
...  

Abstract. A case study of convective outflow from the United States (U.S.) was examined using airborne measurements from NASA DC-8 flight 13 during the Intercontinental Chemical Transport Experiment – North America (INTEX-NA). Mixing ratios of methane (CH4) and carbon monoxide (CO) at 8–11 km altitude over the North Atlantic were elevated to 1843 ppbv and 134 ppbv respectively, while those of carbon dioxide (CO2) and carbonyl sulfide (COS) were reduced to 372.4 ppmv and 411 pptv respectively. In this region, urban and industrial influence was evidenced by elevated mixing ratios and good linear relationships between urban and industrial tracers compared to North Atlantic background air. Moreover, low mixing ratios and a good correlation between COS and CO2 showed a fingerprint of terrestrial uptake and minimal dilution during rapid transport over a 1–2 day time period. Analysis of synoptic conditions, backward trajectories, and photochemical aging estimates based on C3H8/C2H6 strongly suggested that elevated anthropogenic tracers in the upper troposphere of the flight region were the result of fast transport via convective uplifting of boundary layer air over the southeastern U.S. This mechanism is supported by the similar slopes values of linear correlations between long-lived (months) anthropogenic tracers (e.g., C2Cl4 and CHCl3) from the flight region and the planetary boundary layer in the southeastern U.S. In addition, the aircraft measurements suggest that outflow from the U.S. augmented the entire tropospheric column at mid-latitudes over the North Atlantic. Overall, the flight 13 data demonstrate a pervasive impact of U.S. anthropogenic emissions on the troposphere over the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document