scholarly journals Enhanced solar energy absorption by internally-mixed black carbon in snow grains

2012 ◽  
Vol 12 (1) ◽  
pp. 2057-2113 ◽  
Author(s):  
M. G. Flanner ◽  
X. Liu ◽  
C. Zhou ◽  
J. E. Penner

Abstract. Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0.05–109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chýlek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8–2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only ~2% of the atmospheric BC burden is cloud-borne, 71–83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32–73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43–86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism driven by diffusive vapor transfer likely proceeds too slowly to alter the mass of internal BC while it is radiatively active, but neglected processes like wind pumping and convection may play much larger roles. These results suggest that a large portion of BC in surface snowpack may reside within ice grains and increase BC/snow radiative forcing, although measurements to evaluate this are lacking. Finally, previous studies of BC/snow forcing that neglected this absorption enhancement are not necessarily biased low, because of application of absorption-enhancing sulfate coatings to hydrophilic BC, neglect of coincident absorption by dust in snow, and implicit treatment of cloud-borne BC resulting in longer-range transport.

2012 ◽  
Vol 12 (10) ◽  
pp. 4699-4721 ◽  
Author(s):  
M. G. Flanner ◽  
X. Liu ◽  
C. Zhou ◽  
J. E. Penner ◽  
C. Jiao

Abstract. Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0.05–109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chýlek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8–2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only ~2% of the atmospheric BC burden is cloud-borne, 71–83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32–73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43–86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism driven by diffusive vapor transfer likely proceeds too slowly to alter the mass of internal BC while it is radiatively active, but neglected processes like wind pumping and convection may play much larger roles. These results suggest that a large portion of BC in surface snowpack may reside within ice grains and increase BC/snow radiative forcing, although measurements to evaluate this are lacking. Finally, previous studies of BC/snow forcing that neglected this absorption enhancement are not necessarily biased low, because of application of absorption-enhancing sulfate coatings to hydrophilic BC, neglect of coincident absorption by dust in snow, and implicit treatment of cloud-borne BC resulting in longer-range transport.


2015 ◽  
Vol 28 (6) ◽  
pp. 2512-2526 ◽  
Author(s):  
M. Sand ◽  
T. Iversen ◽  
P. Bohlinger ◽  
A. Kirkevåg ◽  
I. Seierstad ◽  
...  

Abstract The climate response to an abrupt increase of black carbon (BC) aerosols is compared to the standard CMIP5 experiment of quadrupling CO2 concentrations in air. The global climate model NorESM with interactive aerosols is used. One experiment employs prescribed BC emissions with calculated concentrations coupled to atmospheric processes (emission-driven) while a second prescribes BC concentrations in air (concentration-driven) from a precalculation with the same model and emissions, but where the calculated BC does not force the climate dynamics. The difference quantifies effects of feedbacks between airborne BC and other climate processes. BC emissions are multiplied with 25, yielding an instantaneous top-of-atmosphere (TOA) radiative forcing (RF) comparable to the quadrupling of atmospheric CO2. A radiative kernel method is applied to estimate the different feedbacks. In both BC runs, BC leads to a much smaller surface warming than CO2. Rapid atmospheric feedbacks reduce the BC-induced TOA forcing by approximately 75% over the first year (10% for CO2). For BC, equilibrium is quickly re-established, whereas for CO2 equilibration requires a much longer time than 150 years. Emission-driven BC responses in the atmosphere are much larger than the concentration-driven. The northward displacement of the intertropical convergence zone (ITCZ) in the BC emission-driven experiment enhances both the vertical transport and deposition of BC from Southeast Asia. The study shows that prescribing BC concentrations may lead to seriously inaccurate conclusions, but other models with less efficient transport may produce results with smaller differences.


2005 ◽  
Vol 18 (15) ◽  
pp. 2903-2921 ◽  
Author(s):  
C. M. Bitz ◽  
M. M. Holland ◽  
E. C. Hunke ◽  
R. E. Moritz

Abstract A coupled global climate model is used to evaluate processes that determine the equilibrium location of the sea-ice edge and its climatological annual cycle. The extent to which the wintertime ice edge departs from a symmetric ring around either pole depends primarily on coastlines, ice motion, and the melt rate at the ice–ocean interface. At any location the principal drivers of the oceanic heat flux that melts sea ice are absorbed solar radiation and the convergence of heat transported by ocean currents. The distance between the ice edge and the pole and the magnitude of the ocean heat flux convergence at the ice edge are inversely related. The chief exception to this rule is in the East Greenland Current, where the ocean heat flux convergence just east of the ice edge is relatively high but ice survives due to its swift southward motion and the protection of the cold southward-flowing surface water. In regions where the ice edge extends relatively far equatorward, absorbed solar radiation is the largest component of the ocean energy budget, and the large seasonal range of insolation causes the ice edge to traverse a large distance. In contrast, at relatively high latitudes, the ocean heat flux convergence is the largest component and it has a relatively small annual range, so the ice edge traverses a much smaller distance there. When the model is subject to increased CO2 forcing up to twice preindustrial levels, the ocean heat flux convergence weakens near the ice edge in most places. This weakening reduces the heat flux from the ocean to the base of the ice and tends to offset the effects of increased radiative forcing at the ice surface, so the ice edge retreats less than it would otherwise.


2014 ◽  
Vol 14 (6) ◽  
pp. 7637-7681 ◽  
Author(s):  
T. Eidhammer ◽  
H. Morrison ◽  
A. Bansemer ◽  
A. Gettelman ◽  
A. J. Heymsfield

Abstract. Detailed measurements of ice crystals in cirrus clouds were used to compare with results from the Community Atmospheric Model Version 5 (CAM5) global climate model. The observations are from two different field campaigns with contrasting conditions: Atmospheric Radiation Measurements Spring Cloud Intensive Operational Period in 2000 (ARM-IOP), which was characterized primarily by midlatitude frontal clouds and cirrus, and Tropical Composition, Cloud and Climate Coupling (TC4), which was dominated by anvil cirrus. Results show that the model typically overestimates the slope parameter of the exponential size distributions of cloud ice and snow, while the variation with temperature (height) is comparable. The model also overestimates the ice/snow number concentration (0th moment of the size distribution) and underestimates higher moments (2nd through 5th), but compares well with observations for the 1st moment. Overall the model shows better agreement with observations for TC4 than for ARM-IOP in regards to the moments. The mass-weighted terminal fallspeed is lower in the model compared to observations for both ARM-IOP and TC4, which is partly due to the overestimation of the size distribution slope parameter. Sensitivity tests with modification of the threshold size for cloud ice to snow autoconversion (Dcs) do not show noticeable improvement in modeled moments, slope parameter and mass weighed fallspeed compared to observations. Further, there is considerable sensitivity of the cloud radiative forcing to Dcs, consistent with previous studies, but no value of Dcs improves modeled cloud radiative forcing compared to measurements. Since the autoconversion of cloud ice to snow using the threshold size Dcs has little physical basis, future improvement to combine cloud ice and snow into a single category, eliminating the need for autoconversion, is suggested.


2021 ◽  
Author(s):  
Ulrike Proske ◽  
Sylvaine Ferrachat ◽  
David Neubauer ◽  
Ulrike Lohmann

<p>Clouds are of major importance for the climate system, but the radiative forcing resulting from their interaction with aerosols remains uncertain. To improve the representation of clouds in climate models, the parameterisations of cloud microphysical processes (CMPs) have become increasingly detailed. However, more detailed climate models do not necessarily result in improved accuracy for estimates of radiative forcing (Knutti and Sedláček, 2013; Carslaw et al., 2018). On the contrary, simpler formulations are cheaper, sufficient for some applications, and allow for an easier understanding of the respective process' effect in the model.</p><p>This study aims to gain an understanding which CMP parameterisation complexity is sufficient through simplification. We gradually phase out processes such as riming or aggregation from the global climate model ECHAM-HAM, meaning that the processes are only allowed to exhibit a fraction of their effect on the model state. The shape of the model response as a function of the artificially scaled effect of a given process helps to understand the importance of this process for the model response and its potential for simplification. For example, if partially removing a process induces only minor alterations in the present day climate, this process presents as a good candidate for simplification. This may be then further investigated, for example in terms of computing time.<br>The resulting sensitivities to CMP complexity are envisioned to guide CMP model simplifications as well as steer research towards those processes where a more accurate representation proves to be necessary.</p><p> </p><p><br>Carslaw, Kenneth, Lindsay Lee, Leighton Regayre, and Jill Johnson (Feb. 2018). “Climate Models Are Uncertain, but We Can Do Something About It”. In: Eos 99. doi: 10.1029/2018EO093757</p><p>Knutti, Reto and Jan Sedláček (Apr. 2013). “Robustness and Uncertainties in the New CMIP5 Climate Model Projections”. In: Nature Climate Change 3.4, pp. 369–373. doi: 10.1038/nclimate1716</p>


2009 ◽  
Vol 66 (4) ◽  
pp. 1033-1040 ◽  
Author(s):  
O. E. García ◽  
A. M. Díaz ◽  
F. J. Expósito ◽  
J. P. Díaz ◽  
A. Redondas ◽  
...  

Abstract The influence of mineral dust on ultraviolet energy transfer is studied for two different mineralogical origins. The aerosol radiative forcing ΔF and the forcing efficiency at the surface ΔFeff in the range 290–325 nm were estimated in ground-based stations affected by the Saharan and Asian deserts during the dusty seasons. UVB solar measurements were taken from the World Ozone and Ultraviolet Data Center (WOUDC) for four Asian stations (2000–04) and from the Santa Cruz Observatory, Canary Islands (2002–03), under Gobi and Sahara Desert influences, respectively. The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth at 550 nm was used to characterize the aerosol load τ, whereas the aerosol index provided by the Total Ozone Mapping Spectrometer (TOMS) sensor was employed to identify the mineral dust events. The ΔF is strongly affected by the aerosol load, the values found being comparable in both regions during the dusty seasons. Under those conditions, ΔF values as large as −1.29 ± 0.53 W m−2 (τ550 = 0.48 ± 0.24) and −1.43 ± 0.38 W m−2 (τ550 = 0.54 ± 0.26) were reached under Saharan and Asian dust conditions, respectively. Nevertheless, significant differences have been observed in the aerosol radiative forcing per unit of aerosol optical depth in the slant path, τS. The maximum ΔFeff values associated with dust influences were −1.55 ± 0.20 W m−2 τS550−1 for the Saharan region and −0.95 ± 0.11 W m−2 τS550−1 in the Asian area. These results may be used as a benchmark database for establishing aerosol corrections in UV satellite products or in global climate model estimations.


2019 ◽  
Vol 32 (23) ◽  
pp. 8323-8333 ◽  
Author(s):  
Sijia Lou ◽  
Yang Yang ◽  
Hailong Wang ◽  
Jian Lu ◽  
Steven J. Smith ◽  
...  

ABSTRACT El Niño–Southern Oscillation (ENSO) is the leading mode of Earth’s climate variability at interannual time scales with profound ecological and societal impacts, and it is projected to intensify in many climate models as the climate warms under the forcing of increasing CO2 concentration. Since the preindustrial era, black carbon (BC) emissions have substantially increased in the Northern Hemisphere. But how BC aerosol forcing may influence the occurrence of the extreme ENSO events has rarely been investigated. In this study, using simulations of a global climate model, we show that increases in BC emissions from both the midlatitudes and Arctic weaken latitudinal temperature gradients and northward heat transport, decrease tropical energy divergence, and increase sea surface temperature over the tropical oceans, with a surprising consequential increase in the frequency of extreme ENSO events. A corollary of this study is that reducing BC emissions might serve to mitigate the possible increasing frequency of extreme ENSO events under greenhouse warming, if the modeling result can be translated into the climate in reality.


2007 ◽  
Vol 20 (24) ◽  
pp. 5946-5961 ◽  
Author(s):  
Jan Sedlacek ◽  
Jean-François Lemieux ◽  
Lawrence A. Mysak ◽  
L. Bruno Tremblay ◽  
David M. Holland

Abstract The granular sea ice model (GRAN) from Tremblay and Mysak is converted from Cartesian to spherical coordinates. In this conversion, the metric terms in the divergence of the deviatoric stress and in the strain rates are included. As an application, the GRAN is coupled to the global Earth System Climate Model from the University of Victoria. The sea ice model is validated against standard datasets. The sea ice volume and area exported through Fram Strait agree well with values obtained from in situ and satellite-derived estimates. The sea ice velocity in the interior Arctic agrees well with buoy drift data. The thermodynamic behavior of the sea ice model over a seasonal cycle at one location in the Beaufort Sea is validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) datasets. The thermodynamic growth rate in the model is almost twice as large as the observed growth rate, and the melt rate is 25% lower than observed. The larger growth rate is due to thinner ice at the beginning of the SHEBA period and the absence of internal heat storage in the ice layer in the model. The simulated lower summer melt is due to the smaller-than-observed surface melt.


2014 ◽  
Vol 27 (5) ◽  
pp. 1845-1862 ◽  
Author(s):  
Ming Zhao

Abstract This study explores connections between process-level modeling of convection and global climate model (GCM) simulated clouds and cloud feedback to global warming through a set of perturbed-physics and perturbed sea surface temperature experiments. A bulk diagnostic approach is constructed, and a set of variables is derived and demonstrated to be useful in understanding the simulated relationship. In particular, a novel bulk quantity, the convective precipitation efficiency or equivalently the convective detrainment efficiency, is proposed as a simple measure of the aggregated properties of parameterized convection important to the GCM simulated clouds. As the convective precipitation efficiency increases in the perturbed-physics experiments, both liquid and ice water path decrease, with low and middle cloud fractions diminishing at a faster rate than high cloud fractions. This asymmetry results in a large sensitivity of top-of-atmosphere net cloud radiative forcing to changes in convective precipitation efficiency in this limited set of models. For global warming experiments, intermodel variations in the response of cloud condensate, low cloud fraction, and total cloud radiative forcing are well explained by model variations in response to total precipitation (or detrainment) efficiency. Despite significant variability, all of the perturbed-physics models produce a sizable increase in precipitation efficiency to warming. A substantial fraction of the increase is due to its convective component, which depends on the parameterization of cumulus mixing and convective microphysical processes. The increase in convective precipitation efficiency and associated change in convective cloud height distribution owing to warming explains the increased cloud feedback and climate sensitivity in recently developed Geophysical Fluid Dynamics Laboratory GCMs. The results imply that a cumulus scheme using fractional removal of condensate for precipitation and inverse calculation of the entrainment rate tends to produce a lower climate sensitivity than a scheme using threshold removal for precipitation and the entrainment rate formulated inversely dependent on convective depth.


Sign in / Sign up

Export Citation Format

Share Document