scholarly journals Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

2012 ◽  
Vol 12 (12) ◽  
pp. 32631-32706 ◽  
Author(s):  
C. A. Randles ◽  
S. Kinne ◽  
G. Myhre ◽  
M. Schulz ◽  
P. Stier ◽  
...  

Abstract. In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

2013 ◽  
Vol 13 (5) ◽  
pp. 2347-2379 ◽  
Author(s):  
C. A. Randles ◽  
S. Kinne ◽  
G. Myhre ◽  
M. Schulz ◽  
P. Stier ◽  
...  

Abstract. In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.


2012 ◽  
Vol 12 (9) ◽  
pp. 25487-25549 ◽  
Author(s):  
P. Stier ◽  
N. A. J. Schutgens ◽  
H. Bian ◽  
O. Boucher ◽  
M. Chin ◽  
...  

Abstract. Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.51 W m−2 and the inter-model standard deviation is 0.70 W m−2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m−2, and the standard deviation increases to 1.21 W m−2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.


2013 ◽  
Vol 13 (6) ◽  
pp. 3245-3270 ◽  
Author(s):  
P. Stier ◽  
N. A. J. Schutgens ◽  
N. Bellouin ◽  
H. Bian ◽  
O. Boucher ◽  
...  

Abstract. Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm−2 (8%) clear-sky and 0.62 Wm−2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.


2008 ◽  
Vol 8 (21) ◽  
pp. 6405-6437 ◽  
Author(s):  
S. Kloster ◽  
F. Dentener ◽  
J. Feichter ◽  
F. Raes ◽  
J. van Aardenne ◽  
...  

Abstract. We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.


2017 ◽  
Vol 10 (1) ◽  
pp. 433-452 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
Karsten Peters ◽  
Sebastian Rast ◽  
...  

Abstract. A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850–2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be −0.6 and −0.5 W m−2, respectively. Forcing from aerosol–cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more readily measurable, provides a good estimate of the total aerosol forcing.


2008 ◽  
Vol 65 (9) ◽  
pp. 2877-2891 ◽  
Author(s):  
K. M. Markowicz ◽  
P. J. Flatau ◽  
J. Remiszewska ◽  
M. Witek ◽  
E. A. Reid ◽  
...  

Abstract Aerosol radiative forcing in the Persian Gulf region is derived from data collected during the United Arab Emirates (UAE) Unified Aerosol Experiment (UAE2). This campaign took place in August and September of 2004. The land–sea-breeze circulation modulates the diurnal variability of the aerosol properties and aerosol radiative forcing at the surface. Larger aerosol radiative forcing is observed during the land breeze in comparison to the sea breeze. The aerosol optical properties change as the onshore wind brings slightly cleaner air. The mean diurnal value of the surface aerosol forcing during the UAE2 campaign is about −20 W m−2, which corresponds to large aerosol optical thickness (0.45 at 500 nm). The aerosol forcing efficiency [i.e., broadband shortwave forcing per unit optical depth at 550 nm, W m−2 (τ500)−1] is −53 W m−2 (τ500)−1 and the average single scattering albedo is 0.93 at 550 nm.


2020 ◽  
Author(s):  
Lucia Timea Deaconu ◽  
Duncan Watson-Parris ◽  
Philip Stier ◽  
Lindsay Lee

<p>Absorbing aerosols affect the climate system (radiative forcing, cloud formation, precipitation and more) by strongly absorbing solar radiation, particularly at ultraviolet and visible wavelengths. The environmental impacts of an absorbing aerosol layer are influenced by its single scattering albedo (SSA), the albedo of the underlying surface, and also by the atmospheric residence time and column concentration of the aerosols.</p><p>Black-carbon (BC), the collective term used for strongly absorbing, carbonaceous aerosols, emitted by incomplete combustion of fossil fuel, biofuel and biomass, is a significant contributor to atmospheric absorption and probably a main-driver in inter-model differences and large uncertainties in estimating the aerosol radiative forcing due to aerosol-radiation interaction (RFari). Estimates of BC direct radiative forcing suggest a positive effect of +0.71 Wm<sup>-2</sup> (Bond and Bergstrom (2006)) with large uncertainties [+0.08, +1.27] Wm<sup>-2</sup>. These uncertainties result from poor estimates of BC atmospheric burden (emissions and removal rates) and its radiative properties. The uncertainty in the burden is due to the uncertainty in emissions (7.5 [2, 29] Tg yr<sup>-1</sup>) and lifetime (removal rates). In comparison with the available observations, global climate models (GCMs) tend to under-predict absorption near source (e.g. at AERONET stations), and over-predict concentrations in remote regions (e.g. as measured by aircraft campaigns). This may be due to GCM’s weak emissions at the source, but longer lifetime of aerosols in the atmosphere.</p><p>This study aims to address the parametric uncertainty of GCMs and constrain the direct radiative forcing using a perturbed parameter ensemble (PPE) and a collection of observations, from remote sensing to in-situ measurements. Total atmospheric aerosol extinction is quantified using satellite observations that provide aerosol optical depth (AOD), while the SSA is constrained by the use of high-temporal resolution aerosol absorption optical depth (AAOD) measured with AERONET sun-photometers (for near-source columnar information of aerosol absorption) and airborne black-carbon in-situ measurements collected and synthesised in the Global Aerosol Synthesis and Science Project (GASSP) (for properties of long-range transported aerosols). Measurements from the airborne campaigns ATOM and HIPPO are valuable for constraining aerosol absorption in remote areas, while CLARIFY and ORACLES, that were employed over Southeast Atlantic, are considered in our study for near source observations of biomass burning aerosols transported over the bright surface of stratocumulus clouds.</p><p>Using the PPE to explore the uncertainties in the aerosol absorption as well as the dominant emission and removal processes, and by comparing with a variety of observations we have confidence to better constrain the aerosol direct radiative forcing.</p>


2021 ◽  
pp. 1-51
Author(s):  
Anna Lea Albright ◽  
Cristian Proistosescu ◽  
Peter Huybers

AbstractA variety of empirical estimates have been published for the lower bounds on aerosol radiative forcing, clustered around -1.0 Wm−2 or -2.0 Wm−2. The reasons for obtaining such different constraints are not well understood. In this study, we explore bounds on aerosol radiative forcing using a Bayesian model of aerosol forcing and Earth’s multi-timescale temperature response to radiative forcing. We first demonstrate the ability of a simple aerosol model to emulate aerosol radiative forcing simulated by ten general circulation models. A joint inference of climate sensitivity and effective aerosol forcing from historical surface temperatures is then made over 1850–2019. We obtain a maximum likelihood estimate of aerosol radiative forcing of -0.85 Wm−2 [5-95% credible interval -1.3 to -0.50 Wm−2] for 2010–2019 relative to 1750 and an equilibrium climate sensitivity of 3.4°C [5-95% credible interval 1.8 to 6.1°C]. The wide range of climate sensitivity reflects difficulty in empirically constraining long-term responses using historical temperatures, as noted elsewhere. A relatively tight bound on aerosol forcing is nonetheless obtained from the structure of temperature and aerosol precursor emissions and, particularly, from the rapid growth in emissions between 1950–1980. Obtaining a fifth-percentile lower bound on aerosol forcing around -2.0 Wm−2 requires prescribing internal climate variance that is a factor of five larger than the CMIP6 mean and assuming large, correlated errors in global temperature observations. Ocean heat uptake observations may further constrain aerosol radiative forcing but require a better understanding of the relationship between time-variable radiative feedbacks and radiative forcing.


2015 ◽  
Vol 28 (12) ◽  
pp. 4794-4819 ◽  
Author(s):  
Bjorn Stevens

Abstract Based on research showing that in the case of a strong aerosol forcing, this forcing establishes itself early in the historical record, a simple model is constructed to explore the implications of a strongly negative aerosol forcing on the early (pre-1950) part of the instrumental record. This model, which contains terms representing both aerosol–radiation and aerosol–cloud interactions, well represents the known time history of aerosol radiative forcing as well as the effect of the natural state on the strength of aerosol forcing. Model parameters, randomly drawn to represent uncertainty in understanding, demonstrate that a forcing more negative than −1.0 W m−2 is implausible, as it implies that none of the approximately 0.3-K temperature rise between 1850 and 1950 can be attributed to Northern Hemisphere forcing. The individual terms of the model are interpreted in light of comprehensive modeling, constraints from observations, and physical understanding to provide further support for the less negative (−1.0 W m−2) lower bound. These findings suggest that aerosol radiative forcing is less negative and more certain than is commonly believed.


Sign in / Sign up

Export Citation Format

Share Document