scholarly journals Analysis of the atmospheric composition during the summer 2013 over the Mediterranean area using the CHARMEX measurements and the CHIMERE model

2014 ◽  
Vol 14 (16) ◽  
pp. 23075-23123 ◽  
Author(s):  
L. Menut ◽  
S. Mailler ◽  
G. Siour ◽  
B. Bessagnet ◽  
S. Turquety ◽  
...  

Abstract. The ADRIMED campaign provides measurements of all key parameters regarding atmospheric composition in the Mediterranean area during the summer 2013. This is an opportunity to quantify the ability of current models to adequately represent the atmospheric composition in this complex region, which is influenced by anthropogenic emissions from Europe, Africa, the Middle-East and from shipping activities as well as mineral dust emissions mostly from the arid areas in Africa, sea-salt emissions, biomass burning emissions and biogenic emissions from the vegetation. The CHIMERE model in its present version is a chemistry-transport model which takes into account all these processes. We show here by simulating the period from 5 June to 15 July 2013 with the CHIMERE model and comparing the results to both routine and specific ADRIMED measurements that this model allows an adequate representation the atmospheric composition over the western Mediterranean, in terms of ozone concentration, particulate matter (PM) and aerosol optical depth (AOD). It is also shown that the concentrations of PM on all the considered area is dominated by mineral dust, even though local dust emissions in Europe are certainly overestimated by the model. A comparison with sulphate concentrations at Cape Corsica exhibits some discrepancies related to the regridding of shipping emissions.

2015 ◽  
Vol 15 (14) ◽  
pp. 7897-7911 ◽  
Author(s):  
L. Menut ◽  
G. Rea ◽  
S. Mailler ◽  
D. Khvorostyanov ◽  
S. Turquety

Abstract. The ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project was dedicated to study the atmospheric composition during the summer 2013 in the European Mediterranean region. During its campaign experiment part, the WRF (Weather Research and Forecast Model) and CHIMERE models were used in the forecast mode in order to decide whether intensive observation periods should be triggered. Each day, a simulation of 4 days was performed, corresponding to (D-1) to (D+2) forecast leads. The goal of this study was to determine whether the model forecast spread is lower or greater than the model biases compared to observations. It is shown that the differences between observations and the model are always higher than those between the forecasts. Among all forcing types used in the chemistry-transport model, it is shown that the strong bias and other related low forecast scores are mainly due to the forecast accuracy of the wind speed, which is used both for the mineral dust emissions (a threshold process) and for the long-range transport of aerosol: the surface wind speed forecast spread can reach 50%, leading to mineral dust emission forecast spread of up to 30%. These variations are responsible for a moderate forecast spread of the surface PM10 (a few percentage points) and for a large spread (more than 50%) in the mineral dust concentration at higher altitudes, leading to a mean AOD (aerosol optical depth) forecast spread of ±10%.


2020 ◽  
Vol 13 (4) ◽  
pp. 2051-2071 ◽  
Author(s):  
Laurent Menut ◽  
Guillaume Siour ◽  
Bertrand Bessagnet ◽  
Florian Couvidat ◽  
Emilie Journet ◽  
...  

Abstract. Modelling of mineral dust is often done using one single mean species. But for biogeochemical studies, it could be useful to access to a more detailed information on differentiated mineral species and the associated chemical composition. Differentiating between mineral species would also induce different optical properties and densities and then different radiative impact, transport and deposition. In this study, the mineralogical differentiation is implemented in the CHIMERE regional chemistry-transport model, by using global databases. The results show that this implementation does not change the results much in terms of aerosol optical depth, surface concentrations and deposition fluxes. But the information on mineralogy, with a high spatial (a few kilometres) and temporal (1 h) resolution, is now available and is ready to be used for future biogeochemical studies.


2019 ◽  
Vol 19 (7) ◽  
pp. 4459-4484 ◽  
Author(s):  
Arineh Cholakian ◽  
Augustin Colette ◽  
Isabelle Coll ◽  
Giancarlo Ciarelli ◽  
Matthias Beekmann

Abstract. Multiple CMIP5 (Coupled Model Intercomparison Project phase 5) future scenarios run with the CHIMERE chemistry transport model (CTM) are compared to historic simulations in order to study some of the drivers governing air pollution. Here, the focus is on regional climate, anthropogenic emissions and long-range transport. Two major subdomains are explored – the European region and the Mediterranean Basin – with both areas showing high sensitivity to climate change. The Mediterranean area is explored in the context of the ChArMEx (the Chemistry Aerosol Mediterranean Experiment) project, which examines the current and future meteorological and chemical conditions of the Mediterranean area. This climate impact study covers the period from 2031 to 2100 and considers possible future scenarios in comparison with 1976 to 2005 historic simulations using three Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5 and RCP8.5). A detailed analysis of total PM10 (particulate matter with a diameter smaller that 10 µm) concentrations is carried out, including the evolution of PM10 and changes to its composition. The individual effects of meteorological conditions on PM10 components are explored in these scenarios in an effort to pinpoint the meteorological parameter(s) governing each component. The anthropogenic emission impact study covers the period from 2046 to 2055 using current legislation (CLE) and maximum feasible reduction (MFR) anthropogenic emissions for the year 2050 compared with historic simulations covering the period from 1996 to 2005 and utilizing CLE2010 emissions data. Long-range transport is explored by changing the boundary conditions in the chemistry transport model over the same period as the emission impact studies. Finally, a cumulative effect analysis of these drivers is performed, and the impact of each driver on PM10 and its components is estimated. The results show that regional climate change causes a decrease in the PM10 concentrations in our scenarios (in both the European and Mediterranean subdomains), as a result of a decrease in nitrate, sulfate, ammonium and dust atmospheric concentrations in most scenarios. On the contrary, BSOA (biogenic secondary organic aerosol) displays an important increase in all scenarios, showing more pronounced concentrations for the European subdomain compared with the Mediterranean region. Regarding the relationship of different meteorological parameters to concentrations of different species, nitrate and BSOA show a strong temperature dependence, whereas sulfate is most strongly correlated with relative humidity. The temperature-dependent behavior of BSOA changes when looking at the Mediterranean subdomain, where it displays more dependence on wind speed, due to the transported nature of BSOA existing in this subdomain. A cumulative look at all drivers shows that anthropogenic emission changes overshadow changes caused by climate and long-range transport for both of the subdomains explored, with the exception of dust particles for which long-range transport changes are more influential, especially in the Mediterranean Basin. For certain species (such as sulfates and BSOA), in most of the subdomains explored, the changes caused by anthropogenic emissions are (to a certain extent) reduced by the boundary conditions and regional climate changes.


2015 ◽  
Vol 15 (7) ◽  
pp. 10341-10388
Author(s):  
L. Menut ◽  
G. Réa ◽  
S. Mailler ◽  
D. Khvorostyanov ◽  
S. Turquety

Abstract. The atmospheric composition was extensively studied in the Euro-Mediterranean region and during the summer 2013, in the framework of the ADRIMED project. During the campaign experiment, the WRF and CHIMERE models were used in forecast mode in order to help scientists to decide whether Intensive Observation Periods should be triggered or not. Each day, a simulation of four days is performed, corresponding to leads from (D−1) to (D+2). The goal of this study is to know the reason why the model does not always simulate in advance what is finally observed: is it due to systematic biases in the models used or to a too large variability due to the real non-linear nature of the meteorology and chemistry? To answer this question, the methodology is to compare the several modelled forecast leads to observations. It was shown that the differences between observations and model is always higher than between the forecast leads. If chemistry-transport model results are not close to the observations, this is mainly due to the model itself (including the meteorology) and its biases. But the forecast variability also acts a lot, mainly due to the modelled wind. This variable is at the origin of the mineral dust and sea salt emissions, as well as the long-range transport of these long-lived species: the wind bias combined to its variability is at the origin of the major part of the aerosols forecast errors.


2020 ◽  
Author(s):  
Laurent Menut ◽  
Guillaume Siour ◽  
Bertrand Bessagnet ◽  
Florian Couvidat ◽  
Emilie Journet ◽  
...  

Abstract. Modelling of mineral dust is often done using one single mean species. But for biogeochemical studies, it could be useful to access to a more detailed information on differenciated mineral species and the associated chemical composition. The fact to differentiate mineral species would also induce different optical properties and densities, then different radiative impact, transport and deposition. In this study, the mineralogical differenciation in implemented in the CHIMERE regional chemistry-transport model, by using global databases. The results show that this implementation does not change a lot the results in term of Aerosol Optical Depth, surface concentrations and deposition fluxes. But the information on mineralogy, with a high spatial (a few kilometers) and temporal (one hour) resolution, is now available and is ready to be used for future biogeochemical studies.


2015 ◽  
Vol 8 (2) ◽  
pp. 191-203 ◽  
Author(s):  
J. Vira ◽  
M. Sofiev

Abstract. This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.


2017 ◽  
Vol 10 (6) ◽  
pp. 2397-2423 ◽  
Author(s):  
Sylvain Mailler ◽  
Laurent Menut ◽  
Dmitry Khvorostyanov ◽  
Myrto Valari ◽  
Florian Couvidat ◽  
...  

Abstract. CHIMERE is a chemistry-transport model designed for regional atmospheric composition. It can be used at a variety of scales from local to continental domains. However, due to the model design and its historical use as a regional model, major limitations had remained, hampering its use at hemispheric scale, due to the coordinate system used for transport as well as to missing processes that are important in regions outside Europe. Most of these limitations have been removed in the CHIMERE-2017 version, allowing its use in any region of the world and at any scale, from the scale of a single urban area up to hemispheric scale, with or without polar regions included. Other important improvements have been made in the treatment of the physical processes affecting aerosols and the emissions of mineral dust. From a computational point of view, the parallelization strategy of the model has also been updated in order to improve model numerical performance and reduce the code complexity. The present article describes all these changes. Statistical scores for a model simulation over continental Europe are presented, and a simulation of the circumpolar transport of volcanic ash plume from the Puyehue volcanic eruption in June 2011 in Chile provides a test case for the new model version at hemispheric scale.


2020 ◽  
Author(s):  
Carlo Brandini ◽  
Stefano Taddei ◽  
Valentina Vannucchi ◽  
Michele Bendoni ◽  
Bartolomeo Doronzo ◽  
...  

<p>In this work we present the results obtained through a dynamic downscaling of the ERA5 reanalysis dataset (hindcast) of ECMWF, using high-resolution meteorological and wave models defined on unstructured computation grids along the Mediterranean coasts, with a particular focus on the North-Western Mediterranean area. Downscaling of the ERA5 meteorological data is obtained through the BOLAM and MOLOCH models (up to a resolution of 2.5 km) which force an unstructured WW3 model with a resolution of up to 500 m along the coast. Models were validated through available meteorological stations, wave buoy data and X-band wave radars, the latter for the purposes of wave spectra validation.</p><p>On the one hand, this allowed, by extracting the time series of some attack parameters of the waves along the coast, and according to the type of coast (rocky coasts, sandy coasts, coastal structures etc.), to compute the return periods and to characterize the impact of any individual storm. On the other hand, it is possible to highlight some trends observed in the last 30 years, during which recent research is showing an increasing evidence  of some changes in global circulation at regional to local scales. These changes also include effects of wind rotation, wave regimes, storm surges, wave-induced coastal currents and coastal morphodynamics. For example, in the North-Western Mediterranean extreme events belonging to cyclonic weather-types circulation with stronger S-SE components (like the storm of October 28-30th 2018 and many others), rather than events associated with perturbations of Atlantic origin and zonal circulation, are becoming more frequent. These long-term wind/wave climate trends can have consequences not only in the assessment of long-term risk due to main morphodynamic variations (ie. coastal erosion), but also in the short-term risk assessment.</p><p>This work was funded by the EU MAREGOT project (2017-2020) and ECMWF Special Project spitbran  “Evaluation of coastal climate trends in the Mediterranean area by means of high-resolution and multi-model downscaling of ERA5 reanalysis” (2018-2020).</p>


2015 ◽  
Vol 15 (15) ◽  
pp. 21607-21669 ◽  
Author(s):  
C. Denjean ◽  
F. Cassola ◽  
A. Mazzino ◽  
S. Triquet ◽  
S. Chevaillier ◽  
...  

Abstract. This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1–5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1–3 km) than at elevated altitude (> 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and satellite retrievals over the Mediterranean. Measurements also showed that the coarse mode of mineral dust was conserved even after 5 days of transport in the Mediterranean, which contrasts with the gravitational depletion of large particles observed during the transport of dust plumes over the Atlantic. Simulations with the WRF mesoscale meteorological model highlighted a strong vertical turbulence within the dust layers that could prevent deposition of large particles during their atmospheric transport. This has important implications for the dust radiative effects due to surface dimming, atmospheric heating and cloud formation. The results presented here add to the observational dataset necessary for evaluating the role of mineral dust on the regional climate and rainfall patterns in the western Mediterranean basin.


Sign in / Sign up

Export Citation Format

Share Document