scholarly journals Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their Direct Radiative Effect

2014 ◽  
Vol 14 (18) ◽  
pp. 25533-25579 ◽  
Author(s):  
F. Peers ◽  
F. Waquet ◽  
C. Cornet ◽  
P. Dubuisson ◽  
F. Ducos ◽  
...  

Abstract. The albedo of clouds and the aerosol absorption are key parameters to evaluate the direct radiative effect of an aerosol layer above clouds. While most of the retrievals of above clouds aerosol characteristics rely on assumptions on the aerosol properties, this study offers a new method to evaluate aerosol and cloud optical properties simultaneously (i.e. aerosol and cloud optical thickness, aerosol single scattering albedo and angström exponent). It is based on multi-angle total and polarized radiances both provided by the A-train satellite instrument POLDER – Polarization and Directionality of Earth Reflectances. The sensitivities brought by each kind of measurements are used in a complementary way. Polarization mostly translates scattering processes and is thus used to estimate the scattering aerosol optical thickness and the aerosol size. On the other hand, total radiances, together with the scattering properties of aerosols, are used to evaluate the absorption optical thickness of aerosols and the cloud optical thickness. In addition, a procedure has been developed to process the shortwave direct radiative effect of aerosols above clouds based on exact modeling. Besides the three case studies (i.e. biomass burning aerosols from Africa and Siberia and Saharan dust), both algorithms have been applied on the South East Atlantic Ocean and results have been averaged through August 2006. The mean direct radiative effect is found to be 33.5 W m−2. Finally, the effect of the heterogeneity of clouds has been investigated and reveals that it affects mostly the retrieval of the cloud optical thickness and not much the aerosols properties. The homogenous cloud assumption used in both the properties retrieval and the DRE processing leads to a slight underestimation of the DRE.

2015 ◽  
Vol 15 (8) ◽  
pp. 4179-4196 ◽  
Author(s):  
F. Peers ◽  
F. Waquet ◽  
C. Cornet ◽  
P. Dubuisson ◽  
F. Ducos ◽  
...  

Abstract. This study presents an original method to evaluate key parameters for the estimation of the direct radiative effect (DRE) of aerosol above clouds: the absorption of the the cloud albedo. It is based on multi-angle total and polarized radiances both provided by the A-train satellite instrument POLDER – Polarization and Directionality of Earth Reflectances. The sensitivities brought by each kind of measurements are used in a complementary way. Polarization mostly translates scattering processes and is thus used to estimate scattering aerosol optical thickness and aerosol size. On the other hand, total radiances, together with the scattering properties of aerosols, are used to evaluate the absorption optical thickness of aerosols and cloud optical thickness. The retrieval of aerosol and clouds properties (i.e., aerosol and cloud optical thickness, aerosol single scattering albedo and Ångström exponent) is restricted to homogeneous and optically thick clouds (cloud optical thickness larger than 3). In addition, a procedure has been developed to process the shortwave DRE of aerosols above clouds. Three case studies have been selected: a case of absorbing biomass burning aerosols above clouds over the southeast Atlantic Ocean, a Siberian biomass burning event and a layer of Saharan dust above clouds off the northwest coast of Africa. Besides these case studies, both algorithms have been applied to the southeast Atlantic Ocean and the results have been averaged during August 2006. The mean DRE is found to be 33.5 W m−2 (warming). Finally, the effect of the heterogeneity of clouds has been investigated and reveals that it affects mostly the retrieval of the cloud optical thickness and not greatly the aerosols properties. The homogenous cloud assumption used in both the properties retrieval and the DRE processing leads to a slight underestimation of the DRE.


2009 ◽  
Vol 66 (8) ◽  
pp. 2468-2480 ◽  
Author(s):  
F. Waquet ◽  
J. Riedi ◽  
L. C. Labonnote ◽  
P. Goloub ◽  
B. Cairns ◽  
...  

Abstract The detection of aerosol above clouds is critical for the estimate of both the aerosol and cloud radiative impacts. In this study, the authors present a new method to retrieve the aerosol properties over clouds that uses the multiangle polarization measurements of the Polarization and Directionality of Earth Reflectances (POLDER)–Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) instrument. The method is illustrated and applied to a case study exploiting the coincident observations from other passive and active sensors of the NASA A-Train satellite constellation. The case study is relative to an elevated biomass burning aerosol layer that originates from southern Africa and is then transported over low-level clouds extending over the Atlantic Ocean. It is shown that the comparison between the cloud-top heights retrieved with the different passive techniques developed for the A-Train sensors can be used to detect the presence of aerosols above clouds. The analysis of the PARASOL observations showed that the aerosols significantly affect the polarized light reflected by the clouds over the 80°–120° scattering angle range and in the rainbow region. A single scattering model permitted the reproduction of the polarization observations and the retrieval of an estimate of the aerosol layer optical thickness of 0.225 at 0.865 μm. The retrieved aerosol optical thicknesses over clouds agree quantitatively with the closest ones retrieved over clear-sky ocean (±0.04 as a maximum departure), demonstrating the value of the method. This innovative technique based solely on passive measurements is expected to provide a better understanding of aerosol properties in regions where significant cloud cover usually prevents the retrieval of aerosol optical thickness. As such, this new retrieval method can provide significant and valuable information about the radiative impact of clouds and aerosols, especially where they can potentially interact strongly with each other.


2014 ◽  
Vol 14 (23) ◽  
pp. 32177-32231 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


2013 ◽  
Vol 6 (6) ◽  
pp. 10731-10759 ◽  
Author(s):  
G. Milinevsky ◽  
V. Danylevsky ◽  
V. Bovchaliuk ◽  
A. Bovchaliuk ◽  
Ph. Goloub ◽  
...  

Abstract. The paper presents an investigation of aerosol seasonal variations in several urban sites in the East European region. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008–2012 data from three urban ground-based AERONET sites in Ukraine (Kyiv, Kyiv-AO, and Lugansk) and one site in Belarus (Minsk), as well as on satellite POLDER instrument data for urban areas in Ukraine. Aerosol amount and optical thickness values exhibit peaks in the spring (April–May) and late summer (August), whereas minimum values are seen in late autumn over the Kyiv and Minsk sites. The results show that aerosol fine mode particles are most frequently detected during the spring and late summer seasons. The seasonal variation similarity in the two regions points to the resemblance in basic aerosol sources which are closely related to properties of aerosol particles. However the aerosol amount and properties change noticeably from year to year and from region to region. The analysis of seasonal aerosol optical thickness variations over the urban sites in the eastern and western parts of Ukraine according to both ground-based and POLDER data exhibits the same traits. In particular, over Kyiv, the values of the Angstrom exponent are lower in April of 2011 than in 2009 and 2010, while aerosol optical thickness values are almost the same, which can be explained by an increase in the amount of coarse mode particles in the atmosphere, such as Saharan dust. Moreover, the coarse mode particles prevailed over suburbs and the center of Kyiv during a third of all available days of observation in 2012. In general, the fine and coarse mode particles' modal radii averaged over 2008–2012 range from 0.1 to 0.2 μm and 2 to 5 μm, respectively, during the period from April to September. The single scattering albedo and refractive index values of these particles correspond to a mix of urban-industrial, biomass burning, and dust aerosols. In addition, strongly absorbing particles were observed in the period from October to March, and the modal radius of fine and coarse mode particles changed from month to month widely.


2005 ◽  
Vol 62 (4) ◽  
pp. 1032-1052 ◽  
Author(s):  
Ralph Kahn ◽  
Wen-Hao Li ◽  
John V. Martonchik ◽  
Carol J. Bruegge ◽  
David J. Diner ◽  
...  

Abstract Studying aerosols over ocean is one goal of the Multiangle Imaging Spectroradiometer (MISR) and other spaceborne imaging systems. But top-of-atmosphere equivalent reflectance typically falls in the range of 0.03 to 0.12 at midvisible wavelengths and can be below 0.01 in the near-infrared, when an optically thin aerosol layer is viewed over a dark ocean surface. Special attention must be given to radiometric calibration if aerosol optical thickness, and any information about particle microphysical properties, are to be reliably retrieved from such observations. MISR low-light-level vicarious calibration is performed in the vicinity of remote islands hosting Aerosol Robotic Network (AERONET) sun- and sky-scanning radiometers, under low aerosol loading, low wind speed, relatively cloud free conditions. MISR equivalent reflectance is compared with values calculated from a radiative transfer model constrained by coincident, AERONET-retrieved aerosol spectral optical thickness, size distribution, and single scattering albedo, along with in situ wind measurements. Where the nadir view is not in sun glint, MISR equivalent reflectance is also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance. The authors push the limits of the vicarious calibration method’s accuracy, aiming to assess absolute, camera-to-camera, and band-to-band radiometry. Patterns repeated over many well-constrained cases lend confidence to the results, at a few percent accuracy, as do additional vicarious calibration tests performed with multiplatform observations taken during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) campaign. Conclusions are strongest in the red and green bands, but are too uncertain to accept for the near-infrared. MISR nadir-view and MODIS low-light-level absolute reflectances differ by about 4% in the blue and green bands, with MISR reporting higher values. In the red, MISR agrees with MODIS band 14 to better than 2%, whereas MODIS band 1 is significantly lower. Compared to the AERONET-constrained model, the MISR aft-viewing cameras report reflectances too high by several percent in the blue, green, and possibly the red. Better agreement is found in the nadir- and the forward-viewing cameras, especially in the blue and green. When implemented on a trial basis, calibration adjustments indicated by this work remove 40% of a 0.05 bias in retrieved midvisible aerosol optical depth over dark water scenes, produced by the early postlaunch MISR algorithm. A band-to-band correction has already been made to the MISR products, and the remaining calibration adjustments, totaling no more than a few percent, are planned.


2019 ◽  
Author(s):  
Christine Aebi ◽  
Julian Gröbner ◽  
Stelios Kazadzis ◽  
Laurent Vuilleumier ◽  
Antonis Gkikas ◽  
...  

Abstract. We have used a method based on ground-based solar radiation measurements and radiative transfer models (RTM) in order to estimate the following cloud optical properties: cloud optical thickness (COT), cloud single scattering albedo (SSAc) and effective droplet radius (reff). The method is based on the minimisation of the difference between modelled and measured downward shortwave radiation (DSR). The optical properties are estimated for more than 3,000 stratus-altostratus (St-As) and 206 cirrus-cirrostratus (Ci-Cs) measurements during 2013–2017, at the Baseline Surface Radiation Network (BSRN) station in Payerne, Switzerland. The RTM libRadtran is used to simulate the total DSR, as well as its direct and diffuse components. The model inputs of additional atmospheric parameters are either ground- or satellite-based measurements. The cloud cases are identified by the use of an all-sky cloud camera. For the low- to mid-level cloud class St-As, 95 % of the estimated COT values from DSR measurements (COTDSR) are between 11.9 and 91.5 with a geometric mean and standard deviation of 33.81 and 1.67, respectively. The comparison of these COTDSR values with COTBarnard values retrieved from an independent empirical equation, results in a mean difference of −1.20 ± 2.73 and is thus within the method uncertainty. However, there is a larger mean difference of around 18 between COTDSR and COT values derived from MODIS level-2 (L2), Collection 6.1 (C6.1) data (COTMODIS). The estimated reff (from liquid water path (LWP) and COTDSR) for St-As are between 2.1 and 20.4 μm. For the high-level cloud class Ci-Cs, COTDSR is derived considering the direct radiation and 95 % of the values are between 0.32 and 1.40. For Ci-Cs, 95 % of the SSAc values are estimated to be between 0.84 and 0.99 using diffuse radiation measurements. The COT values for Ci-Cs are also estimated from data from precision filter radiometers (PFR) at various wavelengths. The herein presented method could be applied and validated at other stations with direct and diffuse radiation measurements.


2019 ◽  
Vol 11 (17) ◽  
pp. 1962 ◽  
Author(s):  
Ryosuke Masuda ◽  
Hironobu Iwabuchi ◽  
Konrad Sebastian Schmidt ◽  
Alessandro Damiani ◽  
Rei Kudo

Observation of the spatial distribution of cloud optical thickness (COT) is useful for the prediction and diagnosis of photovoltaic power generation. However, there is not a one-to-one relationship between transmitted radiance and COT (so-called COT ambiguity), and it is difficult to estimate COT because of three-dimensional (3D) radiative transfer effects. We propose a method to train a convolutional neural network (CNN) based on a 3D radiative transfer model, which enables the quick estimation of the slant-column COT (SCOT) distribution from the image of a ground-mounted radiometrically calibrated digital camera. The CNN retrieves the SCOT spatial distribution using spectral features and spatial contexts. An evaluation of the method using synthetic data shows a high accuracy with a mean absolute percentage error of 18% in the SCOT range of 1–100, greatly reducing the influence of the 3D radiative effect. As an initial analysis result, COT is estimated from a sky image taken by a digital camera, and a high correlation is shown with the effective COT estimated using a pyranometer. The discrepancy between the two is reasonable, considering the difference in the size of the field of view, the space–time averaging method, and the 3D radiative effect.


2015 ◽  
Vol 15 (10) ◽  
pp. 5743-5760 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


1995 ◽  
Vol 34 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Guotong Zhang ◽  
Lisheng Xu ◽  
Hongbin Chen

Abstract A new parameterization scheme for the shortwave radiative properties of water clouds is presented, using versatile cloud drop size distributions ( DSDs). As for single-scattering properties, a new parameterization for cloud optical thickness is proposed by using the separation of the dependence of r on the total number of theDSDs, the cloud thickness, and the liquid water content, combined with equivalent radius. The cloud bulk radiative properties are obtained from the delta-Eddington approximation for our cloud models. It is shown that the flux reflectivity, transmissivity, and absorptivity are uniquely fitted by a dimensionless parameter X or the cloud optical thickness 7. The parameterization is compared with other schemes. The features and potential use of the scheme are discussed.


2013 ◽  
Vol 6 (2) ◽  
pp. 2533-2581 ◽  
Author(s):  
M. Desmons ◽  
N. Ferlay ◽  
F. Parol ◽  
L. Mcharek ◽  
C. Vanbauce

Abstract. This paper describes new advances in the exploitation of oxygen A band measurements from POLDER3 sensor aboard PARASOL, satellite platform within the A-Train. These developments result from a better account of the dependence of POLDER oxygen parameters to cloud optical thickness τ and to the scene's geometrical conditions, but also and more importantly from the finer understanding of the sensitivity of these parameters to cloud vertical extent. This sensitivity is made possible thanks to the multidirectional character of POLDER measurements. In the case of monolayer clouds that represent most of cloudy conditions, new oxygen parameters are obtained and calibrated from POLDER3 data colocalized with the measurements of the two active sensors of the A-Train, CALIOP/CALIPSO and CPR/CloudSat. From a parameterization that is (μs, τ) dependent, with μs the cosine of the solar zenith angle, a cloud top oxygen pressure (CTOP) and a cloud middle oxygen pressure (CMOP) are obtained which are estimates of actual cloud top and middle pressures. The performance of CTOP and CMOP are presented for the most numerous ISCCP cases in 2008. The coefficient of the correlation between CMOP and the actual cloud middle pressure is 0.81 for cirrostratus, 0.79 for stratocumulus, 0.75 for deep convective clouds. The coefficient of the correlation between CTOP and the actual cloud top pressure is 0.75, 0.73, and 0.79 for the same cloud types respectively. The score obtained by CTOP, defined as the confidence in the retrieval for a particular range of infered value and for a given error, is higher than the one of MODIS CTP. For liquid and ice clouds, the score reaches 50 and 70% respectively for bin value of CTP superior in numbers and accepted errors of 30 and 50 hPa. From the difference between CTOP and CMOP, a first estimate of the cloud vertical extent H is possible. Then, the correlation between the angular standard deviation of POLDER oxygen pressure σPO2 and the cloud vertical extent is described in detail in the case of liquid clouds. The correlation is shown to be spatially and temporally robust, excepted for clouds above land during winter months. The study of the correlation's dependence to cloud optical thickness and to the scene's geometrical conditions leads to parameterizations which provide a second way for retrieving H for this type of clouds. For liquid water clouds above ocean in 2008, the mean difference between the actual cloud vertical extent and the one retrieved from σPO2 (from the pressure difference) is 5 m (−12 m). The standard deviation of the mean difference is close to 1000 m for the two methods. The score of 50% confidence for the retrieval of H corresponds to an error of 20 and 40% for ice and liquid clouds respectively over ocean. These promising results need to be validated outside of the CALIPSO/CloudSat track.


Sign in / Sign up

Export Citation Format

Share Document