scholarly journals On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century

2014 ◽  
Vol 14 (7) ◽  
pp. 9951-9973 ◽  
Author(s):  
J. Aschmann ◽  
J. P. Burrows ◽  
C. Gebhardt ◽  
A. Rozanov ◽  
R. Hommel ◽  
...  

Abstract. Chemistry–climate models predict an acceleration of the upwelling branch of the Brewer–Dobson circulation as a consequence of increasing global surface temperatures, resulting from elevated levels of atmospheric greenhouse gases. The observed decrease of ozone in the tropical lower stratosphere during the last decades of the 20th century is consistent with the anticipated acceleration of upwelling. However, more recent satellite observations of ozone reveal that this decrease has unexpectedly stopped in the first decade of the 21st century, challenging the implicit assumption of a continuous acceleration of tropical upwelling. In this study we use three decades of chemistry-transport-model simulations (1980–2013) to investigate this phenomenon and resolve this apparent contradiction. Our model reproduces the observed tropical lower stratosphere ozone record, showing a significant decrease in the early period followed by a statistically robust trend-change after 2002. We demonstrate that this trend-change is correlated with corresponding changes in the vertical transport and conclude that a hiatus in the acceleration of tropical upwelling occurred during the last decade.

2014 ◽  
Vol 14 (23) ◽  
pp. 12803-12814 ◽  
Author(s):  
J. Aschmann ◽  
J. P. Burrows ◽  
C. Gebhardt ◽  
A. Rozanov ◽  
R. Hommel ◽  
...  

Abstract. Chemistry–climate models predict an acceleration of the upwelling branch of the Brewer–Dobson circulation as a consequence of increasing global surface temperatures, resulting from elevated levels of atmospheric greenhouse gases. The observed decrease of ozone in the tropical lower stratosphere during the last decades of the 20th century is consistent with the anticipated acceleration of upwelling. However, more recent satellite observations of ozone reveal that this decrease has unexpectedly stopped in the first decade of the 21st century, challenging the implicit assumption of a continuous acceleration of tropical upwelling. In this study we use three decades of chemistry-transport-model simulations (1980–2013) to investigate this phenomenon and resolve this apparent contradiction. Aside from a high-bias between 1985–1990, our model is able to reproduce the observed tropical lower stratosphere ozone record. A regression analysis identifies a significant decrease in the early period followed by a statistically robust trend-change after 2002, in qualitative agreement with the observations. We demonstrate that this trend-change is correlated with structural changes in the vertical transport, represented in the model by diabatic heating rates taken from the reanalysis product Era-Interim. These changes lead to a hiatus in the acceleration of tropical upwelling between 70–30 hPa and a southward shift of the tropical pipe at 30 and 100 hPa during the past decade, which appear to be the primary causes for the observed trend-change in ozone.


2018 ◽  
Author(s):  
Mohamadou Diallo ◽  
Paul Konopka ◽  
Michelle L. Santee ◽  
Rolf Müller ◽  
Mengchu Tao ◽  
...  

Abstract. The stratospheric Brewer–Dobson circulation (BD-circulation) determines the transport and lifetime of key radiatively active trace gases and further impacts surface climate through downward coupling. Here, we quantify the variability in the lower stratospheric BD-circulation induced by the El Nino Southern Oscillation (ENSO), using satellite trace gas measurements and simulations with the Lagrangian chemistry transport model, CLaMS, driven by ERA-Interim and JRA-55 reanalyses. We show that despite discrepancies in the deseasonalised ozone (O3) mixing ratios between CLaMS simulations and satellite observations, the patterns of changes in the lower stratospheric O3 anomalies induced by ENSO agree remarkably well over the 2005–2016 period. Particularly during the most recent El Niño in 2015–2016, both satellite observations and CLaMS simulations show the largest negative tropical O3 anomaly in the record. Regression analysis of different metrics of the BD-circulation strength, including mean age of air, vertical velocity, residual circulation and age spectrum, shows clear evidence for structural changes of the BD-circulation in the lower stratosphere induced by El Niño, consistent with observed O3 anomalies. These structural changes during El Niño include a weakening of the transition branch of the BD-circulation between about 370–420 K (∼ 100–70 hPa) and equatorward of about 60° and, a strengthening of the shallow branch at the same latitudes and between about 420–500 K (∼ 70–30 hPa). The strengthening of the shallow branch induces negative tropical O3 anomalies due to enhanced tropical upwelling, while the weakening of the transition branch combined with enhanced downwelling due to the strengthening shallow branch leads to positive O3 anomalies in the extratropical upper troposphere-lower stratosphere (UTLS). Our results suggest that a shift of the ENSO basic state toward more frequent El Niño-like conditions in a warming future climate will substantially alter UTLS trace gas distributions due to these changes in the vertical structure of the stratospheric circulation.


2011 ◽  
Vol 4 (4) ◽  
pp. 901-917 ◽  
Author(s):  
A. Hodzic ◽  
J. L. Jimenez

Abstract. A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA mass and hygroscopicity in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10−11 cm3 molecule−1 s−1 reproduce the observed average SOA mass within 30 % in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10−12 cm3 molecule−1 s−1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged SOA/ΔCO ratios are rather consistent globally for anthropogenic pollution, this parameterization could be reasonably tested in and applied to other regions. The evolution of oxygen-to-carbon ratio was also empirically modeled and the predicted levels were found to be in reasonable agreement with observations. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple parameterizations. Our results suggest that the pollution enhancement of biogenic SOA could provide additional SOA, but does not however explain the concentrations or the spatial and temporal variations of measured SOA mass in the vicinity of Mexico City, which appears to be controlled by anthropogenic sources. The contribution of the biomass burning to the predicted SOA is less than 10% during the studied period.


2021 ◽  
Author(s):  
Felix Ploeger ◽  
Mohamadou Diallo ◽  
Edward Charlesworth ◽  
Paul Konopka ◽  
Bernard Legras ◽  
...  

Abstract. This paper investigates the global stratospheric Brewer–Dobson circulation (BDC) in the ERA5 meteorological reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The analysis is based on simulations of stratospheric mean age of air, including the full age spectrum, with the Lagrangian transport model CLaMS, driven by winds and total diabatic heating rates from the reanalysis. ERA5-based results are compared to those of the preceding ERA–Interim reanalysis. Our results show a significantly slower BDC for ERA5 than for ERA–Interim, manifesting in weaker diabatic heating rates and larger age of air. In the tropical lower stratosphere, heating rates are 30–40 % weaker in ERA5, likely correcting a known bias in ERA–Interim. Above, ERA5 age of air appears slightly high-biased and the BDC slightly slow compared to tracer observations. The age trend in ERA5 over 1989–2018 is negative throughout the stratosphere, as climate models predict in response to global warming. However, the age decrease is not linear over the period but exhibits steplike changes which could be caused by muti-annual variability or changes in the assimilation system. Over the 2002–2012 period, ERA5 age shows a similar hemispheric dipole trend pattern as ERA–Interim, with age increasing in the NH and decreasing in the SH. Shifts in the age spectrum peak and residual circulation transit times indicate that reanalysis differences in age are likely caused by differences in the residual circulation. In particular, the shallow BDC branch accelerates similarly in both reanalyses while the deep branch accelerates in ERA5 and decelerates in ERA–Interim.


2018 ◽  
Vol 18 (19) ◽  
pp. 14715-14735 ◽  
Author(s):  
Simon Chabrillat ◽  
Corinne Vigouroux ◽  
Yves Christophe ◽  
Andreas Engel ◽  
Quentin Errera ◽  
...  

Abstract. We present a consistent intercomparison of the mean age of air (AoA) according to five modern reanalyses: the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), the Japanese Meteorological Agency's Japanese 55-year Reanalysis (JRA-55), the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR) and the National Aeronautics and Space Administration's Modern Era Retrospective analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2). The modeling tool is a kinematic transport model driven only by the surface pressure and wind fields. It is validated for ERA-I through a comparison with the AoA computed by another transport model. The five reanalyses deliver AoA which differs in the worst case by 1 year in the tropical lower stratosphere and more than 2 years in the upper stratosphere. At all latitudes and altitudes, MERRA-2 and MERRA provide the oldest values (∼5–6 years in midstratosphere at midlatitudes), while JRA-55 and CFSR provide the youngest values (∼4 years) and ERA-I delivers intermediate results. The spread of AoA at 50 hPa is as large as the spread obtained in a comparison of chemistry–climate models. The differences between tropical and midlatitude AoA are in better agreement except for MERRA-2. Compared with in situ observations, they indicate that the upwelling is too fast in the tropical lower stratosphere. The spread between the five simulations in the northern midlatitudes is as large as the observational uncertainties in a multidecadal time series of balloon observations, i.e., approximately 2 years. No global impact of the Pinatubo eruption can be found in our simulations of AoA, contrary to a recent study which used a diabatic transport model driven by ERA-I and JRA-55 winds and heating rates. The time variations are also analyzed through multiple linear regression analyses taking into account the seasonal cycles, the quasi-biennial oscillation and the linear trends over four time periods. The amplitudes of AoA seasonal variations in the lower stratosphere are significantly larger when using MERRA and MERRA-2 than with the other reanalyses. The linear trends of AoA using ERA-I confirm those found by earlier model studies, especially for the period 2002–2012, where the dipole structure of the latitude–height distribution (positive in the northern midstratosphere and negative in the southern midstratosphere) also matches trends derived from satellite observations of SF6. Yet the linear trends vary substantially depending on the considered period. Over 2002–2015, the ERA-I results still show a dipole structure with positive trends in the Northern Hemisphere reaching up to 0.3 yr dec−1. No reanalysis other than ERA-I finds any dipole structure of AoA trends. The signs of the trends depend strongly on the input reanalysis and on the considered period, with values above 10 hPa varying between approximately −0.4 and 0.4 yr dec−1. Using ERA-I and CFSR, the 2002–2015 trends are negative above 10 hPa, but using the three other reanalyses these trends are positive. Over the whole period (1989–2015) each reanalysis delivers opposite trends; i.e., AoA is mostly increasing with CFSR and ERA-I but mostly decreasing with MERRA, JRA-55 and MERRA-2. In view of this large disagreement, we urge great caution for studies aiming to assess AoA trends derived only from reanalysis winds. We briefly discuss some possible causes for the dependency of AoA on the input reanalysis and highlight the need for complementary intercomparisons using diabatic transport models.


2017 ◽  
Vol 17 (11) ◽  
pp. 7055-7066 ◽  
Author(s):  
Felix Ploeger ◽  
Paul Konopka ◽  
Kaley Walker ◽  
Martin Riese

Abstract. Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i) into the tropical stratosphere (tropical pipe), and (ii) into the Northern Hemisphere (NH) extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN) and carbon monoxide (CO) observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.


2017 ◽  
Author(s):  
Felix Ploeger ◽  
Paul Konopka ◽  
Kaley Walker ◽  
Martin Riese

Abstract. Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i) into the tropical stratosphere (tropical pipe), and (ii) into the Northern hemisphere (NH) extra-tropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extra-tropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN) and carbon monoxide (CO) observations, corroborating that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the emissions transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.


2021 ◽  
Author(s):  
Juan Cuesta ◽  
Lorenzo Costantino ◽  
Matthias Beekmann ◽  
Guillaume Siour ◽  
Laurent Menut ◽  
...  

Abstract. We present a comprehensive study integrating satellite observations of ozone pollution, in situ measurements and chemistry transport model simulations for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020 over Europe. Satellite observations are derived from the IASI+GOME2 multispectral synergism, which provides particularly enhanced sensitivity to near-surface ozone pollution. These observations are first analysed in terms of differences between the average on 1–15 April 2020, when the strictest lockdown restrictions took place, and the same period in 2019. They show clear enhancements of near-surface ozone in Central Europe and Northern Italy, and some other hotspots, which are typically characterized by VOC-limited chemical regimes. An overall reduction of ozone is observed elsewhere, where ozone chemistry is limited by the abundance of NOx. The spatial distribution of positive and negative ozone concentration anomalies observed from space is in relatively good quantitative agreement with surface in situ measurements over the continent (a correlation coefficient of 0.55, a root-mean-squared difference of 11 ppb and the same standard deviation and range of variability). An average bias of ∼8 ppb between the two observational datasets is remarked, which can partly be explained by the fact the satellite approach retrieves partial columns of ozone with a peak sensitivity above the surface (near 2 km of altitude). For assessing the impact of the reduction of anthropogenic emissions during the lockdown, we adjust the satellite and in situ surface observations for withdrawing the influence of meteorological conditions in 2020 and 2019. This adjustment is derived from the chemistry transport model simulations using the meteorological fields of each year and identical emission inventories. This observational estimate of the influence of lockdown emission reduction is consistent for both datasets. They both show lockdown-associated ozone enhancements in hotspots over Central Europe and Northern Italy, with a reduced amplitude with respect to the total changes observed between the two years, and an overall reduction elsewhere over Europe and the ocean. Satellite observations additionally highlight the ozone anomalies in the regions remote from in situ sensors, an enhancement over the Mediterranean likely associated with maritime traffic emissions and a marked large-scale reduction of ozone elsewhere over ocean (particularly over the North Sea), in consistency with previous assessments done with ozonesondes measurements in the free troposphere. These observational assessments are compared with model-only estimations, using the CHIMERE chemistry transport model. For analysing the uncertainty of the model estimates, we perform two sets of simulations with different setups, differing in the emission inventories, their modifications to account for changes in anthropogenic activities during the lockdown and the meteorological fields. Whereas a general qualitative consistency of positive and negative ozone anomalies is remarked between all model and observational estimates, significant changes are seen in their amplitudes. Models underestimate the range of variability of the ozone changes by at least a factor 2 with respect to the two observational data sets, both for enhancements and decreases of ozone, while the large-scale ozone decrease is not simulated. With one of the setups, the model simulates ozone enhancements a factor 3 to 6 smaller than with the other configuration. This is partly linked to the emission inventories of ozone precursors (at least a 30 % difference), but mainly to differences in vertical mixing of atmospheric constituents depending on the choice of the meteorological model.


2014 ◽  
Vol 14 (2) ◽  
pp. 3099-3168 ◽  
Author(s):  
I. B. Konovalov ◽  
E. V. Berezin ◽  
P. Ciais ◽  
G. Broquet ◽  
M. Beekmann ◽  
...  

Abstract. A method to constrain carbon dioxide (CO2) emissions from open biomass burning by using satellite observations of co-emitted species and a chemistry-transport model (CTM) is proposed and applied to the case of wildfires in Siberia. CO2 emissions are assessed by means of an emission model assuming a direct relationship between the biomass burning rate (BBR) and the Fire Radiative Power (FRP) derived from the MODIS measurements. The key features of the method are (1) estimating the FRP-to-BBR conversion factors (α) for different vegetative land cover types by assimilating the satellite observations of co-emitted species into the CTM, (2) optimal combination of the estimates of α derived independently from satellite observations of different species (CO and aerosol in this study), and (3) estimation of the diurnal cycle of the fire emissions directly from the FRP measurements. Values of α for forest and grassland fires in Siberia and their uncertainties are estimated by using the IASI carbon monoxide (CO) retrievals and the MODIS aerosol optical depth (AOD) measurements combined with outputs from the CHIMERE mesoscale chemistry transport model. The constrained CO emissions are validated through comparison of the respective simulations with the independent data of ground based CO measurements at the ZOTTO site. Using our optimal regional-scale estimates of the conversion factors (which are found to be in agreement with the earlier published estimates obtained from local measurements of experimental fires), the total CO2 emissions from wildfires in Siberia in 2012 are estimated to be in the range from 262 to 477 Tg C, with the optimal (maximum likelihood) value of 354 Tg C. Sensitivity test cases featuring different assumptions regarding the injection height and diurnal variations of emissions indicate that the derived estimates of the total CO2 emissions in Siberia are robust with respect to the modelling options (the different estimates vary within less than 10% of their magnitude). The obtained CO2 emission estimates for several years are compared with the independent estimates provided by the GFED3.1 and GFASv1.0 global emission inventories. It is found that our "top-down" estimates for the total annual biomass burning CO2 emissions in the period from 2007 to 2011 in Siberia are by factors of 2.3 and 1.7 larger than the respective bottom-up estimates; these discrepancies cannot be fully explained by uncertainties in our estimates. There are also considerable differences in the spatial distribution of the different emission estimates; some of those differences have a systematic character and require further analysis.


2020 ◽  
Vol 13 (9) ◽  
pp. 3817-3838
Author(s):  
Xiao Lu ◽  
Lin Zhang ◽  
Tongwen Wu ◽  
Michael S. Long ◽  
Jun Wang ◽  
...  

Abstract. Chemistry plays an indispensable role in investigations of the atmosphere; however, many climate models either ignore or greatly simplify atmospheric chemistry, limiting both their accuracy and their scope. We present the development and evaluation of the online global atmospheric chemical model BCC-GEOS-Chem v1.0, coupling the GEOS-Chem chemical transport model (CTM) as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model (BCC-AGCM). The GEOS-Chem atmospheric chemistry component includes detailed tropospheric HOx–NOx–volatile organic compounds–ozone–bromine–aerosol chemistry and online dry and wet deposition schemes. We then demonstrate the new capabilities of BCC-GEOS-Chem v1.0 relative to the base BCC-AGCM model through a 3-year (2012–2014) simulation with anthropogenic emissions from the Community Emissions Data System (CEDS) used in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The model captures well the spatial distributions and seasonal variations in tropospheric ozone, with seasonal mean biases of 0.4–2.2 ppbv at 700–400 hPa compared to satellite observations and within 10 ppbv at the surface to 500 hPa compared to global ozonesonde observations. The model has larger high-ozone biases over the tropics which we attribute to an overestimate of ozone chemical production. It underestimates ozone in the upper troposphere which is likely due either to the use of a simplified stratospheric ozone scheme or to biases in estimated stratosphere–troposphere exchange dynamics. The model diagnoses the global tropospheric ozone burden, OH concentration, and methane chemical lifetime to be 336 Tg, 1.16×106 molecule cm−3, and 8.3 years, respectively, which is consistent with recent multimodel assessments. The spatiotemporal distributions of NO2, CO, SO2, CH2O, and aerosol optical depth are generally in agreement with satellite observations. The development of BCC-GEOS-Chem v1.0 represents an important step for the development of fully coupled earth system models (ESMs) in China.


Sign in / Sign up

Export Citation Format

Share Document