scholarly journals Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008

2015 ◽  
Vol 15 (7) ◽  
pp. 11049-11109 ◽  
Author(s):  
B. Quennehen ◽  
J.-C. Raut ◽  
K. S. Law ◽  
G. Ancellet ◽  
C. Clerbaux ◽  
...  

Abstract. The ability of six global and one regional model to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over Asia in summer 2008 is evaluated using satellite and in-situ observations. Whilst ozone precursors (NO2 and CO) are generally underestimated by the models in the troposphere, surface NO2 concentrations are overestimated, suggesting that emissions of NOx are too high. Ozone integrated columns and vertical profiles are generally well modeled, but the global models face difficulties simulating the ozone gradient at the surface between urban and rural environments, pointing to the need to increase model resolution. The accuracy of simulated aerosol patterns over eastern China and northern India varies between the models, and although most of the models reproduce the observed pollution features over eastern China, significant biases are noted in the magnitude of optical properties (aerosol optical depth, aerosol backscatter). These results have important implications for accurate prediction of pollution episodes affecting air quality and the radiative effects of these short-lived climate pollutants over Asia.

2013 ◽  
Vol 52 (14) ◽  
pp. 3178 ◽  
Author(s):  
Detlef Müller ◽  
Igor Veselovskii ◽  
Alexei Kolgotin ◽  
Matthias Tesche ◽  
Albert Ansmann ◽  
...  

2020 ◽  
Author(s):  
Georgy I. Shapiro ◽  
Jose M. Gonzalez-Ondina ◽  
Xavier Francis ◽  
Hyee S. Lim ◽  
Ali Almehrezi

<p>Modern numerical ocean models have matured over the last decades and are able to provide accurate fore- and hind-cast of the ocean state. The most accurate data could be obtained from the reanalysis where the model run in a hindcast mode with assimilation of available observational data. An obvious benefit of model simulation is that it provides the spatial density and temporal resolution which cannot be achieved by in-situ observations or satellite derived measurements. It is not unusual that even a relatively small area of the ocean model can have in access of 100,000 nodes in the horizontal, each containing vertical profiles of temperature, salinity, velocity and other ocean parameters with a temporal resolution theoretically as high as a few minutes. Remotely sensed (satellite) observations of sea surface temperature can compete with the models in terms of spatial resolution, however they only produce data at the sea surface not the vertical profiles. On the other hand, in-situ observations have a benefit of being much more precise than model simulations. For instance a widely used CTD profiler SBE 911plus has accuracy of about 0.001 °C, which is not achievable by models.</p><p>In the creation of a climatic atlas the higher accuracy of individual profiles provided by in-situ measurements may become less beneficial. Assuming the normal distribution of data at each location, the standard error of the mean (SEM) is calculated as SE=S/SQRT(N), where S is the standard deviation of individual data points around the mean, and N is the number of data points. The climatic data are obtained by averaging a large number of individual data points, and here the benefit of having more data points may become a greater advantage than the accuracy of a single observation.  </p><p>In this study we have created an ocean climate atlas for the northern part of the Indian Ocean including the Red Sea and the Arabian Gulf using model generated data. The data were taken from Copernicus Marine Environment Monitoring Service (CMEMS) reanalysis product GLOBAL_REANALYSIS_PHY_001_030 with 1/12° horizontal resolution and 50 vertical levels for the period 1998 to 2017. The model component is the NEMO platform driven at the surface by ECMWF ERA-Interim reanalysis. The model assimilates along track altimeter data, satellite Sea Surface Temperature, as well as in-situ temperature and salinity vertical profiles where available. The monthly data from CMEMS were then averaged over 20 years to produce an atlas at the surface, 10, 20, 30, 75, 100, 125, 150, 200, 250, 300, 400, and 500 m depths.  The standard error of the mean has been calculated for each point and each depth level on the native grid (1/12 degree).</p><p>The atlas based on model simulations was compared with the latest version of the World Ocean Atlas (WOA)  2018 published by the NCEI.  WOA has objectively analysed climatological mean fields on a ¼  degree grid. The differences between the mean values and SEMs from observational and simulated atlases are analysed, and the potential causes of mismatch are discussed.</p>


2021 ◽  
Author(s):  
Huiqing Li ◽  
Aizhong Ye ◽  
Yuhang Zhang ◽  
Wenwu Zhao

<p>Soil moisture (SM), a vital variable in the climate system, is applied in many fields. But the existing SM data sets from different sources have great uncertainty, hence need comprehensive verification. In this study, we collected and evaluated ten latest commonly used SM products over China, including four reanalysis data (ERA-Interim, ERA5, NCEP R2 and CFSR/CFSV2), three land surface model products (GLDAS 2.1 Noah, CLSM and VIC) and three remote sensing products (ESA CCI ACTIVE, COMBINED and PASSIVE). These products in their overlap period (2000-2018) were inter-compared in spatial and temporal variation. In addition, their accuracy was verified by a large quantity of in-situ observations. The results show that the ten SM products have roughly similar spatial patterns and small inter-annual differences, but there are still some deviations varying in regions and products. ERA5 displays the most encouraging overall performance in China. The estimates of SM in the northwest of China among all products generally perform poorly on capturing in-situ SM variability due to less coverage of observations. CLSM and ERA5 have a satisfactory correlation coefficient with the observed SM (R>0.7) in the northeast and south of China, respectively. ESA CCI ACTIVE performs with the optimal mean Equitable Threat Score (ETS) value, which indicates the promising ability to drought assessment, followed by CFSR/CFSV2 and ERA5. Specifically, ESA CCI ACTIVE expresses higher ETS in the Yellow River Basin, while CFSR/CFSV2 and ERA5 are more applicable in most areas of the eastern China. This study provides a reasonable reference for the application of SM products in China.</p>


2007 ◽  
Vol 7 (5) ◽  
pp. 15189-15212 ◽  
Author(s):  
C. Shim ◽  
Q. Li ◽  
M. Luo ◽  
S. Kulawik ◽  
H. Worden ◽  
...  

Abstract. Concurrent tropospheric O3 and CO vertical profiles from the Tropospheric Emission Spectrometer (TES) during the MILAGRO/INTEX-B aircraft campaigns over the Mexico City Metropolitan Area (MCMA) allow us to characterize mega-city pollution. Outflow from the MCMA occurred predominantly at 600–800 hPa, evident in O3, CO, and NOx enhancements in the in situ observations. We examined O3, CO, and their correlation at 600–800 hPa from TES retrievals, aircraft measurements, and GEOS-Chem model results over the aircraft coverage (within a radius of ~700 km around MCMA). The enhancements in O3 and CO seen in the in situ measurements are not apparent in TES data, due to the lack of TES coverage during several strong pollution events. However, TES O3 and CO data are consistent with the aircraft observations on a daily mean basis (50–60 ppbv and 100–130 ppbv for O3 and CO respectively). The O3-CO correlation coefficients and enhancement ratios (ΔO3/ΔCO) derived from TES data are in good agreements with those derived from the aircraft observations and GEOS-Chem model results (r : 0.5–0.9; ΔO3/ΔCO: 0.3–0.4), reflecting significant springtime photochemical production over MCMA and the surrounding region.


2015 ◽  
Vol 12 (5) ◽  
pp. 5151-5186 ◽  
Author(s):  
B. Jia ◽  
J. Liu ◽  
Z. Xie

Abstract. Twenty years of in situ soil moisture data from more than 300 stations located in China are used to perform an evaluation of two surface soil moisture datasets: a microwave-based multi-satellite product (ECV-SM) and the land surface model simulation from the Community Land Model 4.5 (CLM4.5). Both soil moisture products generally show a good agreement with in situ observations. The ECV-SM product has a low bias, with a root mean square difference (RMSD) of 0.075 m3 m-3, but shows a weak correlation with in situ observations (R = 0.41). In contrast, the CLM4.5 simulation, forced by an observation-based atmospheric forcing data, produces better temporal variation of surface soil moisture (R = 0.52), but shows a clear overestimation (bias = 0.05 m3 m-3) and larger RMSD (0.09 m3 m-3), especially in eastern China, caused by inaccurate descriptions of soil characteristics. The ECV-SM product is more likely to be superior in semi-arid regions, mainly because of the accurate retrievals and high observation density, but inferior over areas covered by dense vegetation. Furthermore, it shows a stable to slightly increasing performance in China, except for a decrease during the 2007–2010 blending period. Results from this study can provide comprehensive insight into the performances of the two soil moisture datasets in China, which will be useful for their improvements in merging algorithms or model simulations and for applications in soil moisture data assimilation.


2012 ◽  
Vol 12 (2) ◽  
pp. 4679-4717 ◽  
Author(s):  
Z. Liu ◽  
Y. Wang ◽  
D. Gu ◽  
C. Zhao ◽  
L. G. Huey ◽  
...  

Abstract. We analyze summertime photochemistry near the surface over Beijing, China, using a 1-D photochemical model (Regional chEmical and trAnsport Model, REAM-1D) constrained by in situ observations, focusing on the budgets of ROx (OH + HO2 + RO2) radicals and O3 formation. The daytime average of total ROx primary production rate in Beijing is ~6.6 ppbv h−1, among the highest found in urban atmospheres. The largest primary ROx source in Beijing is photolysis of oxygenated volatile organic compounds (OVOCs), which produces HO2 and RO2 at average daytime rates of 2.5 ppbv h−1 and 1.7 ppbv h−1, respectively. Photolysis of excess HONO from the unknown heterogeneous source is a predominant primary OH source at 2.2 ppbv h−1, much larger than that of O1D + H2O (0.4 ppbv h−1). The largest ROx sink is via OH + NO2 reaction (1.6 ppbv h−1), followed by formation of RO2NO2 (1.0 ppbv h−1) and RONO2 (0.7 ppbv h−1). Due to the large aerosol surface area, aerosol uptake of HO2 appears to be another important radical sink, although the estimate of its magnitude is highly variable depending on the reactive uptake coefficient value used. The daytime average O3 production and loss rates are 32 ppbv h−1 and 6.2 ppbv h−1, respectively. Assuming NO2 to be the source of excess HONO, the NO2 to HONO transformation leads to significant O3 loss and reduction of its lifetime. Our observation-based modeling analyses suggest that VOCs and heterogeneous reactions (e.g. HONO formation and aerosol uptake HO2) play major roles in the primary radical budget and O3 formation in Beijing. Among the VOC precursors for OVOCs, which strongly affect ROx budgets and O3 formation, aromatics are the largest contributor. One important ramification is that O3 production is neither NOx nor VOC limited, but in a transition regime, where reduction of either NOx or VOCs could result in reduction of O3 production. The transition regime implies more flexibility in the O3 control strategies than a binary system of either NOx or VOC limited regime. Further research on the spatial extent of the transition regime over the polluted eastern China is critically important for controlling regional O3 pollution.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Sze Hoon Gan ◽  
Zarinah Waheed ◽  
Fung Chen Chung ◽  
Davies Austin Spiji ◽  
Leony Sikim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document