scholarly journals Atmospheric inversion for cost effective quantification of city CO<sub>2</sub> emissions

2015 ◽  
Vol 15 (21) ◽  
pp. 30693-30756 ◽  
Author(s):  
L. Wu ◽  
G. Broquet ◽  
P. Ciais ◽  
V. Bellassen ◽  
F. Vogel ◽  
...  

Abstract. Cities, currently covering only a very small portion (< 3 %) of the world's land surface, directly release to the atmosphere about 44 % of global energy-related CO2, and are associated with 71–76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by Monitoring, Reporting and Verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the inversion can meet this requirement. As for major sectoral CO2 emissions, the uncertainties in the inverted emissions using 70 stations are reduced significantly over that obtained using 10 stations by 32 % for commercial and residential buildings, by 33 % for road transport and by 18 % for the production of energy by power plants, respectively. With 70 stations, the uncertainties from the inversion become of 15 % 2-sigma annual uncertainty for dispersed building emissions, and 18 % for emissions from road transport and energy production. The inversion performance could be further improved by optimal design of station locations and/or by assimilating additional atmospheric measurements of species that are co-emitted with CO2 by fossil fuel combustion processes with a specific signature from each sector, such as carbon monoxide (CO). Atmospheric inversions based on continuous CO2 measurements from a large number of cheap sensors can thus deliver a valuable quantification tool for the monitoring and/or the verification of city CO2 emissions (baseline) and CO2 emission reductions (commitments).

2016 ◽  
Vol 16 (12) ◽  
pp. 7743-7771 ◽  
Author(s):  
Lin Wu ◽  
Grégoire Broquet ◽  
Philippe Ciais ◽  
Valentin Bellassen ◽  
Felix Vogel ◽  
...  

Abstract. Cities currently covering only a very small portion ( <  3 %) of the world's land surface directly release to the atmosphere about 44 % of global energy-related CO2, but they are associated with 71–76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (∼  12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ∼  EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ∼  42 %. It can be further reduced by extending the network, e.g., from 10 to 70 stations, which is promising for MRV applications in the Paris metropolitan area. With 70 stations, the uncertainties in the inverted emissions are reduced significantly over those obtained using 10 stations: by 32 % for commercial and residential buildings, by 33 % for road transport, by 18 % for the production of energy by power plants, and by 31 % for total emissions. These results indicate that such a high number of stations would be likely required for the monitoring of sectoral emissions in Paris using this observation–model framework. They demonstrate some high potential that atmospheric inversions can contribute to the monitoring and/or the verification of city CO2 emissions (baseline) and CO2 emission reductions (commitments) and the advantage that could be brought by the current developments of lower-cost medium precision (LCMP) sensors.


2020 ◽  
Author(s):  
Jinghui Lian ◽  
François-Marie Bréon ◽  
Grégoire Broquet ◽  
Bo Zheng ◽  
Michel Ramonet ◽  
...  

Abstract. The top-down atmospheric inversion method that couples atmospheric CO2 observations with an atmospheric transport model has been used extensively to quantify CO2 emissions from cities. However, the potential of the method is limited by several sources of misfits between the measured and modeled CO2 that are of different origins than the targeted CO2 emissions. This study investigates the critical sources of errors that can compromise the estimates of the city-scale emissions and identifies the signal of emissions that has to be filtered when doing inversions. A set of one-year forward simulations is carried out using the WRF-Chem model at a horizontal resolution of 1 km focusing on the Paris area with different anthropogenic emission inventories, physical parameterizations and CO2 boundary conditions. The simulated CO2 concentrations are compared with in situ observations from six continuous monitoring stations located within Paris and its vicinity. Results highlight large nighttime observation-model misfits, especially in winter within the city, which are attributed to large uncertainties in the diurnal profile of anthropogenic emissions as well as to errors in the vertical mixing near the surface in the WRF-Chem model. The nighttime biogenic respiration to the CO2 concentration is a significant source of modeling errors during the growing season outside the city. When winds are from continental Europe and the CO2 concentration of incoming air masses is influenced by remote emissions and large-scale biogenic fluxes, differences in the simulated CO2 induced by the two different boundary conditions (CAMS and CarbonTracker) can be of up to 5 ppm. Our results suggest three selection criteria for the CO2 data to be assimilated for the inversion of CO2 emissions from Paris (i) discard data that appear as statistical outliers in the model-data misfits which are interpreted as model's deficiencies under complex meteorological conditions; (ii) use only afternoon urban measurements in winter and suburban ones in summer; (iii) test the influence of different boundary conditions in inversions. If possible, using additional observations to constrain the boundary inflow, or using CO2 gradients of upwind-downwind stations, rather than absolute CO2 concentration, as atmospheric inversion inputs.


2019 ◽  
Vol 11 (2) ◽  
pp. 687-703 ◽  
Author(s):  
Yilong Wang ◽  
Philippe Ciais ◽  
Grégoire Broquet ◽  
François-Marie Bréon ◽  
Tomohiro Oda ◽  
...  

Abstract. A large fraction of fossil fuel CO2 emissions emanate from “hotspots”, such as cities (where direct CO2 emissions related to fossil fuel combustion in transport, residential, commercial sectors, etc., excluding emissions from electricity-producing power plants, occur), isolated power plants, and manufacturing facilities, which cover a small fraction of the land surface. The coverage of all high-emitting cities and point sources across the globe by bottom-up inventories is far from complete, and for most of those covered, the uncertainties in CO2 emission estimates in bottom-up inventories are too large to allow continuous and rigorous assessment of emission changes (Gurney et al., 2019). Space-borne imagery of atmospheric CO2 has the potential to provide independent estimates of CO2 emissions from hotspots. But first, what a hotspot is needs to be defined for the purpose of satellite observations. The proposed space-borne imagers with global coverage planned for the coming decade have a pixel size on the order of a few square kilometers and a XCO2 accuracy and precision of <1 ppm for individual measurements of vertically integrated columns of dry-air mole fractions of CO2 (XCO2). This resolution and precision is insufficient to provide a cartography of emissions for each individual pixel. Rather, the integrated emission of diffuse emitting areas and intense point sources is sought. In this study, we characterize area and point fossil fuel CO2 emitting sources which generate coherent XCO2 plumes that may be observed from space. We characterize these emitting sources around the globe and they are referred to as “emission clumps” hereafter. An algorithm is proposed to identify emission clumps worldwide, based on the ODIAC global high-resolution 1 km fossil fuel emission data product. The clump algorithm selects the major urban areas from a GIS (geographic information system) file and two emission thresholds. The selected urban areas and a high emission threshold are used to identify clump cores such as inner city areas or large power plants. A low threshold and a random walker (RW) scheme are then used to aggregate all grid cells contiguous to cores in order to define a single clump. With our definition of the thresholds, which are appropriate for a space imagery with 0.5 ppm precision for a single XCO2 measurement, a total of 11 314 individual clumps, with 5088 area clumps, and 6226 point-source clumps (power plants) are identified. These clumps contribute 72 % of the global fossil fuel CO2 emissions according to the ODIAC inventory. The emission clumps is a new tool for comparing fossil fuel CO2 emissions from different inventories and objectively identifying emitting areas that have a potential to be detected by future global satellite imagery of XCO2. The emission clump data product is distributed from https://doi.org/10.6084/m9.figshare.7217726.v1.


2016 ◽  
Author(s):  
Johannes Staufer ◽  
Grégoire Broquet ◽  
François-Marie Bréon ◽  
Vincent Puygrenier ◽  
Frédéric Chevallier ◽  
...  

Abstract. The ability of a Bayesian atmospheric inversion to quantify the Paris region’s fossil fuel CO2 emissions on a monthly basis, based on a network of three surface stations operated during one year as part of the CO2-MEGAPARIS experiment (August 2010–July 2011), is analysed. Differences in hourly CO2 atmospheric mole fraction between the near-ground monitoring sites (CO2 gradients), located at the north-eastern and south-western edges of the urban area, are used to estimate the 6-h mean fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km × 2 km horizontal resolution, on the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km × 1 km horizontal resolution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land surface model. It corrects a prior estimate of the 6-h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF 2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients if wind speeds are larger than 3 m s−1 and if the modelled wind at the upwind site is within ±15 degrees of the transect between downwind and upwind site. This stringent data selection removes 92 % of the hourly observations. Even though this leaves few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the uncertainty in monthly emissions, by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent with the independent revision of the AIRPARIF inventory for the year 2010, which better corresponds to the measurement period than the 2008 inventory. Several tests of the inversion's sensitivity to prior emission estimates, to the assumed spatial distribution of the emissions, and to the atmospheric transport modelling demonstrate the robustness of the measurement constraint on inverted fossil fuel CO2 emissions. The results, however, show significant sensitivity to the description of the emissions' spatial distribution in the inversion system, demonstrating the need to rely on high-resolution local inventories such as that from AIRPARIF. Although the inversion constrains emissions through the assimilation of CO2 gradients, the results are hampered by the improperly modelled influence of remote CO2 fluxes when air masses originate from urbanised and industrialised areas north-east of Paris. The drastic data selection used in this study limits the ability to continuously monitor Paris fossil fuel CO2 emissions: the inversion results for specific months like September 2010 or November 2010 are poorly constrained by too few CO2 measurements. The high sensitivity of the inverted emissions to the prior emissions' day-to-day variations highlights the limitations induced by assimilating data during a limited number of suitable days. Therefore, even though the inversion improves the seasonal variation and the annual budget of the city's emissions, it does not necessarily yield robust estimates for individual months. These limitations, could be overcome through a refinement of the data processing for a wider data selection, and through the expansion of the observation network.


2006 ◽  
Vol 87 (10) ◽  
pp. 1381-1398 ◽  
Author(s):  
Paul A. Dirmeyer ◽  
Xiang Gao ◽  
Mei Zhao ◽  
Zhichang Guo ◽  
Taikan Oki ◽  
...  

Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May–June 2005, to determine the variability in concentration gradients and fluxes of CO2 The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to sample the CO2 concentration and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns. Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.


2015 ◽  
Vol 15 (20) ◽  
pp. 29591-29638 ◽  
Author(s):  
S. Newman ◽  
X. Xu ◽  
K. R. Gurney ◽  
Y.-K. Hsu ◽  
K.-F. Li ◽  
...  

Abstract. Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion for both sites and broken those down into contributions from petroleum/gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena CO2 emissions from fossil fuel combustion during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. For natural gas, inferred emissions are out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but are consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 emissions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare emissions from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in fall and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.


2021 ◽  
Author(s):  
Thomas Kaminski ◽  
Marko Scholze ◽  
Peter Rayner ◽  
Sander Houweling ◽  
Michael Voßbeck ◽  
...  

&lt;p&gt;The Paris Agreement foresees to establish a transparency framework that builds upon inventory-based national greenhouse gas emission reports, complemented by independent emission estimates derived from atmospheric measurements through inverse modelling. The capability of such a Monitoring and Verification Support (MVS) capacity to constrain fossil fuel emissions to a sufficient extent has not yet been assessed. The CO2 Monitoring Mission (CO2M), planned as a constellation of satellites measuring column-integrated atmospheric CO2 concentration (XCO2), is expected to become a key component of an MVS capacity.&amp;#160;&lt;/p&gt;&lt;p&gt;Here we present a CCFFDAS that operates at the resolution of the CO2M sensor, i.e. 2km by 2km, over a 200 km by 200 km region around Berlin. It combines models of sectorial fossil fuel CO2 emissions and biospheric fluxes with the Community Multiscale Air Quality model (coupled to a model of the plume rise from large power plants) as observation operator for XCO2 and tropospheric column NO2 measurements. Inflow from the domain boundaries is treated as extra unknown to be solved for by the CCFFDAS, which also includes prior information on the process model parameters. We discuss the sensitivities (Jacobian matrix) of simulated XCO2 and NO2 troposheric columns with respect to a) emissions from power plants, b) emissions from the surface and c) the lateral inflow and quantify the respective contributions to the observed signal. The Jacobian representation of the complete modelling chain allows us to evaluate data sets of simulated random and systematic CO2M errors in terms of posterior uncertainties in sectorial fossil fuel emissions. We provide assessments of XCO2 alone and in combination with NO2 on the posterior uncertainty in sectorial fossil fuel emissions for two 1-day study periods, one in winter and one in summer. We quantify the added value of the observations for emissions at a single point, at the 2km by 2km scale, at the scale of Berlin districts, and for &amp;#160;Berlin and further cities in our domain. This means the assessments include temporal and spatial scales typically not covered by inventories. Further, we quantify the effect of better information of atmospheric aerosol, provided by a multi-angular polarimeter (MAP) onboard CO2M, on the posterior uncertainties.&lt;/p&gt;&lt;p&gt;The assessments differentiate the fossil fuel CO2 emissions into two sectors, an energy generation sector (power plants) and the complement, which we call &amp;#8220;other sector&amp;#8221;. We find that XCO2 measurements alone provide a powerful constraint on emissions from larger power plants and a constraint on emissions from the other sector that increases when aggregated to larger spatial scales. The MAP improves the impact of the CO2M measurements for all power plants and for the other sector on all spatial scales. Over our study domain, the impact of the MAP is particularly high in winter. NO2 measurements provide a powerful additional constraint on the emissions from power plants and from the other sector.&lt;/p&gt;


2016 ◽  
Vol 16 (22) ◽  
pp. 14703-14726 ◽  
Author(s):  
Johannes Staufer ◽  
Grégoire Broquet ◽  
François-Marie Bréon ◽  
Vincent Puygrenier ◽  
Frédéric Chevallier ◽  
...  

Abstract. The ability of a Bayesian atmospheric inversion to quantify the Paris region's fossil fuel CO2 emissions on a monthly basis, based on a network of three surface stations operated for 1 year as part of the CO2-MEGAPARIS experiment (August 2010–July 2011), is analysed. Differences in hourly CO2 atmospheric mole fractions between the near-ground monitoring sites (CO2 gradients), located at the north-eastern and south-western edges of the urban area, are used to estimate the 6 h mean fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km  ×  2 km horizontal resolution, on the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km  ×  1 km horizontal resolution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land surface model. It corrects a prior estimate of the 6 h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF 2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients if wind speeds are larger than 3 m s−1 and if the modelled wind at the upwind site is within ±15° of the transect between downwind and upwind sites. This stringent data selection removes 92 % of the hourly observations. Even though this leaves few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the uncertainty in monthly emissions: by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent with the independent revision of the AIRPARIF inventory for the year 2010, which better corresponds to the measurement period than the 2008 inventory. Several tests of the inversion's sensitivity to prior emission estimates, to the assumed spatial distribution of the emissions, and to the atmospheric transport modelling demonstrate the robustness of the measurement constraint on inverted fossil fuel CO2 emissions. The results, however, show significant sensitivity to the description of the emissions' spatial distribution in the inversion system, demonstrating the need to rely on high-resolution local inventories such as that from AIRPARIF. Although the inversion constrains emissions through the assimilation of CO2 gradients, the results are hampered by the improperly modelled influence of remote CO2 fluxes when air masses originate from urbanised and industrialised areas north-east of Paris. The drastic data selection used in this study limits the ability to continuously monitor Paris fossil fuel CO2 emissions: the inversion results for specific months such as September or November 2010 are poorly constrained by too few CO2 measurements. The high sensitivity of the inverted emissions to the prior emissions' diurnal variations highlights the limitations induced by assimilating data only during the afternoon. Furthermore, even though the inversion improves the seasonal variation and the annual budget of the city's emissions, the assimilation of data during a limited number of suitable days does not necessarily yield robust estimates for individual months. These limitations could be overcome through a refinement of the data processing for a wider data selection, and through the expansion of the observation network.


2021 ◽  
Vol 21 (13) ◽  
pp. 10707-10726
Author(s):  
Jinghui Lian ◽  
François-Marie Bréon ◽  
Grégoire Broquet ◽  
Thomas Lauvaux ◽  
Bo Zheng ◽  
...  

Abstract. The top-down atmospheric inversion method that couples atmospheric CO2 observations with an atmospheric transport model has been used extensively to quantify CO2 emissions from cities. However, the potential of the method is limited by several sources of misfits between the measured and modeled CO2 that are of different origins than the targeted CO2 emissions. This study investigates the critical sources of errors that can compromise the estimates of the city-scale emissions and identifies the signal of emissions that has to be filtered when doing inversions. A set of 1-year forward simulations is carried out using the WRF-Chem model at a horizontal resolution of 1 km focusing on the Paris area with different anthropogenic emission inventories, physical parameterizations, and CO2 boundary conditions. The simulated CO2 concentrations are compared with in situ observations from six continuous monitoring stations located within Paris and its vicinity. Results highlight large nighttime model–data misfits, especially in winter within the city, which are attributed to large uncertainties in the diurnal profile of anthropogenic emissions as well as to errors in the vertical mixing near the surface in the WRF-Chem model. The nighttime biogenic respiration to the CO2 concentration is a significant source of modeling errors during the growing season outside the city. When winds are from continental Europe and the CO2 concentration of incoming air masses is influenced by remote emissions and large-scale biogenic fluxes, differences in the simulated CO2 induced by the two different boundary conditions (CAMS and CarbonTracker) can be of up to 5 ppm. Nevertheless, our results demonstrate the potential of our optimal CO2 atmospheric modeling system to be utilized in atmospheric inversions of CO2 emissions over the Paris metropolitan area. We evaluated the model performances in terms of wind, vertical mixing, and CO2 model–data mismatches, and we developed a filtering algorithm for outliers due to local contamination and unfavorable meteorological conditions. Analysis of model–data misfit indicates that future inversions at the mesoscale should only use afternoon urban CO2 measurements in winter and suburban measurements in summer. Finally, we determined that errors related to CO2 boundary conditions can be overcome by including distant background observations to constrain the boundary inflow or by assimilating CO2 gradients of upwind–downwind stations rather than by assimilating absolute CO2 concentrations.


Sign in / Sign up

Export Citation Format

Share Document