scholarly journals Tuning of a convective gravity wave source scheme based on HIRDLS observations

2015 ◽  
Vol 15 (23) ◽  
pp. 34325-34360
Author(s):  
Q. T. Trinh ◽  
S. Kalisch ◽  
P. Preusse ◽  
M. Ern ◽  
H.-Y. Chun ◽  
...  

Abstract. Convection as one dominant source of atmospheric gravity waves (GWs) has been in focus of investigation over recent years. However, its spatial and temporal forcing scales are not well known. In this work we address this open issue by a systematic verification of free parameters of the Yonsei convective GW source scheme based on observations from the High Resolution Dynamics Limb Sounder (HIRDLS). Observational constraints are taken into account by applying a comprehensive observational filter on the simulated GWs. By this approach, only long horizontal scale convective GWs are addressed. Results show that effects of long horizontal scale convective GWs can be successfully simulated by the superposition of three or four combinations of parameter sets reproducing the observed GW spectrum. These selected parameter sets are different for northern and southern summer. Although long horizontal scale waves are only part of the full spectrum of convective GWs, the momentum flux of these waves are found to be significant and relevant for the driving of the QBO. The zonal momentum balance is considered in vertical cross sections of GW momentum flux (GWMF) and GW drag (GWD). Global maps of the horizontal distribution of GWMF are considered and consistency between simulated results and HIRDLS observations is found. The latitude dependence of the zonal phase speed spectrum of GWMF and its change with altitude is discussed.

2016 ◽  
Vol 16 (11) ◽  
pp. 7335-7356 ◽  
Author(s):  
Quang Thai Trinh ◽  
Silvio Kalisch ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Hye-Yeong Chun ◽  
...  

Abstract. Convection as one dominant source of atmospheric gravity waves (GWs) has been the focus of investigation over recent years. However, its spatial and temporal forcing scales are not well known. In this work we address this open issue by a systematic verification of free parameters of the Yonsei convective GW source scheme based on observations from the High Resolution Dynamics Limb Sounder (HIRDLS). The instrument can only see a limited portion of the gravity wave spectrum due to visibility effects and observation geometry. To allow for a meaningful comparison of simulated GWs to observations, a comprehensive filter, which mimics the instrument limitations, is applied to the simulated waves. By this approach, only long horizontal-scale convective GWs are addressed. Results show that spectrum, distribution of momentum flux, and zonal mean forcing of long horizontal-scale convective GWs can be successfully simulated by the superposition of three or four combinations of parameter sets reproducing the observed GW spectrum. These selected parameter sets are different for northern and southern summer. Although long horizontal-scale waves are only part of the full spectrum of convective GWs, the momentum flux of these waves is found to be significant and relevant for the driving of the QBO (quasi-biennial oscillation). The zonal momentum balance is considered in vertical cross sections of GW momentum flux (GWMF) and GW drag (GWD). Global maps of the horizontal distribution of GWMF are considered and consistency between simulated results and HIRDLS observations is found. The latitude dependence of the zonal phase speed spectrum of GWMF and its change with altitude is discussed.


2013 ◽  
Vol 6 (6) ◽  
pp. 10797-10832
Author(s):  
R. A. Vincent ◽  
A. Hertzog

Abstract. Super pressure balloons (SPB), which float on constant density (isopycnic) surfaces, provide a unique way of measuring the properties of atmospheric gravity waves (GW) as a function of wave intrinsic frequency. Here we devise a quasi-analytic method of investigating the SPB response to GW motions. It is shown that the results agree well with more rigorous numerical simulations of balloon motions and provide a better understanding of the response of SPB to GW, especially at high frequencies. The methodology is applied to ascertain the accuracy of GW studies using 12 m diameter SPB deployed in the 2010 Concordiasi campaign in the Antarctic. In comparison with the situation in earlier campaigns, the vertical displacements of the SPB were measured directly using GPS. It is shown using a large number of Monte-Carlo type simulations with realistic instrumental noise that important wave parameters, such as momentum flux, phase speed and wavelengths, can be retrieved with good accuracy from SPB observations for intrinsic wave periods greater than about 10 min. The noise floor for momentum flux is estimated to be about 10−4 mPa.


2014 ◽  
Vol 7 (4) ◽  
pp. 1043-1055 ◽  
Author(s):  
R. A. Vincent ◽  
A. Hertzog

Abstract. Superpressure balloons (SPB), which float on constant density (isopycnic) surfaces, provide a unique way of measuring the properties of atmospheric gravity waves (GW) as a function of wave intrinsic frequency. Here we devise a quasi-analytic method of investigating the SPB response to GW motions. It is shown that the results agree well with more rigorous numerical simulations of balloon motions and provide a better understanding of the response of SPB to GW, especially at high frequencies. The methodology is applied to ascertain the accuracy of GW studies using 12 m diameter SPB deployed in the 2010 Concordiasi campaign in the Antarctic. In comparison with the situation in earlier campaigns, the vertical displacements of the SPB were measured directly using GPS. It is shown using a large number of Monte Carlo-type simulations with realistic instrumental noise that important wave parameters, such as momentum flux, phase speed and wavelengths, can be retrieved with good accuracy from SPB observations for intrinsic wave periods greater than ca. 10 min. The noise floor for momentum flux is estimated to be ca. 10−4 mPa.


2006 ◽  
Vol 2 (S239) ◽  
pp. 230-232 ◽  
Author(s):  
Kwing L. Chan

AbstractWe present results of a numerical model for studying the dynamics of Jupiter's equatorial jet. The computed domain is a piece of spherical shell around the equator. The bulk of the region is convective, with a thin radiative layer at the top. The shell is spinning fast, with a Coriolis number = ΩL/V on the order of 50. A prominent super-rotating equatorial jet is generated, and secondary alternating jets appear in the higher latitudes. The roles of terms in the zonal momentum equation are analyzed. Since both the Reynolds number and the Taylor number are large, the viscous terms are small. The zonal momentum balance is primarily between the Coriolis and the Reynolds stress terms.


In this paper we embark on a calculation of all the normal-mode perturbations of nonlinear, irrotational gravity waves as a function of the wave steepness. The method is to use as coordinates the stream-function and velocity potential in the steady, unperturbed wave (seen in a reference frame moving with the phase speed) together with the time t. The dependent quantities are the cartesian displacements and the perturbed stream function at the free surface. To begin we investigate the ‘superharmonics’, i.e. those perturbations having the same horizontal scale as the fundamental wave, or less. When the steepness of the fundamental is small, the normal modes take the form of travelling waves superposed on the basic nonlinear wave. As the steepness increases the frequency of each perturbation tends generally to be diminished. At a steepness ak ≈ 0.436 it appears that the two lowest modes coalesce and an instability arises. There is evidence that this critical steepness corresponds precisely with the steepness at which the phase velocity is a maximum, considered as a function of ak. The calculations are facilitated by the discovery of some new identities between the coefficients in Stokes’s expansion for waves of finite amplitude.


2019 ◽  
Vol 76 (9) ◽  
pp. 2941-2962
Author(s):  
Cory A. Barton ◽  
John P. McCormack ◽  
Stephen D. Eckermann ◽  
Karl W. Hoppel

Abstract A methodology is presented for objectively optimizing nonorographic gravity wave source parameters to minimize forecast error for target regions and forecast lead times. In this study, we employ a high-altitude version of the Navy Global Environmental Model (NAVGEM-HA) to ascertain the forcing needed to minimize hindcast errors in the equatorial lower stratospheric zonal-mean zonal winds in order to improve forecasts of the quasi-biennial oscillation (QBO) over seasonal time scales. Because subgrid-scale wave effects play a large role in driving the QBO, this method leverages the nonorographic gravity wave drag (GWD) parameterization scheme to provide the necessary forcing. To better constrain the GWD source parameters, we utilize ensembles of NAVGEM-HA hindcasts over the 2014–16 period with perturbed source parameters and develop a cost function to minimize errors in the equatorial lower stratosphere compared to analysis. Thus, we may determine the set of GWD source parameters that yields a forecast state that most closely agrees with observed QBO winds over each optimization time interval. Results show that the source momentum flux and phase speed spectrum width are the most important parameters. The seasonal evolution of optimal parameter value, specifically a robust semiannual periodicity in the source strength, is also revealed. Changes in optimal source parameters with increasing forecast lead time are seen, as the GWD parameterization takes on a more active role as QBO driver at longer forecast lengths. Implementation of a semiannually varying source function at the equator provides RMS error improvement in QBO winds over the default constant value.


2013 ◽  
Vol 43 (10) ◽  
pp. 2156-2172 ◽  
Author(s):  
Laurent Grare ◽  
Luc Lenain ◽  
W. Kendall Melville

Abstract An analysis of coherent measurements of winds and waves from data collected during the Office of Naval Research (ONR) High-Resolution air–sea interaction (HiRes) program, from the Floating Instrument Platform (R/P FLIP), off the coast of northern California in June 2010 is presented. A suite of wind and wave measuring systems was deployed to resolve the modulation of the marine atmospheric boundary layer by waves. Spectral analysis of the data provided the wave-induced components of the wind velocity for various wind–wave conditions. The power spectral density, the amplitude, and the phase (relative to the waves) of these wave-induced components are computed and bin averaged over spectral wave age c/U(z) or c/u*, where c is the linear phase speed of the waves, U(z) is the mean wind speed measured at the height z of the anemometer, and u* is the friction velocity in the air. Results are qualitatively consistent with the critical layer theory of Miles. Across the critical height zc, defined such that U(zc) = c, the wave-induced vertical and horizontal velocities change significantly in both amplitude and phase. The measured wave-induced momentum flux shows that, for growing waves, less than 10% of the momentum flux at z ≈ 10 m is supported by waves longer than approximately 15 m. For older sea states, these waves are able to generate upward wave-induced momentum flux opposed to the overall downward momentum flux. The measured amplitude of this upward wave-induced momentum flux was up to 20% of the value of the total wind stress when Cp/u* > 60, where Cp is the phase speed at the peak of the wave spectrum.


2018 ◽  
Vol 31 (18) ◽  
pp. 7401-7416 ◽  
Author(s):  
Orli Lachmy ◽  
Tiffany Shaw

Coupled climate models project that extratropical storm tracks and eddy-driven jets generally shift poleward in response to increased CO2 concentration. Here the connection between the storm-track and jet responses to climate change is examined using the Eliassen–Palm (EP) relation. The EP relation states that the eddy potential energy flux is equal to the eddy momentum flux times the Doppler-shifted phase speed. The EP relation can be used to connect the storm-track and eddy-driven jet responses to climate change assuming 1) the storm-track and eddy potential energy flux responses are consistent and 2) the response of the Doppler-shifted phase speed is negligible. We examine the extent to which the EP relation connects the eddy-driven jet (eddy momentum flux convergence) response to climate change with the storm-track (eddy potential energy flux) response in two idealized aquaplanet model experiments. The two experiments, which differ in their radiation schemes, both show a poleward shift of the storm track in response to climate change. However, the eddy-driven jet shifts poleward using the sophisticated radiation scheme but equatorward using the gray radiation scheme. The EP relation gives a good approximation of the momentum flux response and the eddy-driven jet shift, given the eddy potential energy flux response, because the Doppler-shifted phase speed response is negligible. According to the EP relation, the opposite shift of the eddy-driven jet for the different radiation schemes is associated with dividing the eddy potential energy flux response by the climatological Doppler-shifted phase speed, which is dominated by the zonal-mean zonal wind.


2007 ◽  
Vol 64 (8) ◽  
pp. 2899-2915 ◽  
Author(s):  
Gang Chen ◽  
Isaac M. Held ◽  
Walter A. Robinson

The sensitivity to surface friction of the latitude of the surface westerlies and the associated eddy-driven midlatitude jet is studied in an idealized dry GCM. The westerlies move poleward as the friction is reduced in strength. An increase in the eastward phase speed of midlatitude eddies is implicated as playing a central role in this shift. This shift in latitude is mainly determined by changes in the friction on the zonal mean flow rather than the friction on the eddies. If the friction on the zonal mean is reduced instantaneously, the response reveals two distinctive adjustment time scales. In the fast adjustment over the first 10–20 days, there is an increase in the barotropic component of zonal winds and a substantial decrease in the eddy kinetic energy; the shift in the surface westerlies and jet latitude occurs in a slower adjustment. The space–time eddy momentum flux spectra suggest that the key to the shift is a poleward movement in the subtropical critical latitude associated with the faster eastward phase speeds in the dominant midlatitude eddies. The view is supported by simulating the upper-tropospheric dynamics in a stochastically stirred nonlinear shallow water model.


1989 ◽  
Vol 19 (5) ◽  
pp. 561-570 ◽  
Author(s):  
T. M. Dillon ◽  
J. N. Moum ◽  
T. K. Chereskin ◽  
D. R. Caldwell

Sign in / Sign up

Export Citation Format

Share Document