scholarly journals Tuning of a convective gravity wave source scheme based on HIRDLS observations

2016 ◽  
Vol 16 (11) ◽  
pp. 7335-7356 ◽  
Author(s):  
Quang Thai Trinh ◽  
Silvio Kalisch ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Hye-Yeong Chun ◽  
...  

Abstract. Convection as one dominant source of atmospheric gravity waves (GWs) has been the focus of investigation over recent years. However, its spatial and temporal forcing scales are not well known. In this work we address this open issue by a systematic verification of free parameters of the Yonsei convective GW source scheme based on observations from the High Resolution Dynamics Limb Sounder (HIRDLS). The instrument can only see a limited portion of the gravity wave spectrum due to visibility effects and observation geometry. To allow for a meaningful comparison of simulated GWs to observations, a comprehensive filter, which mimics the instrument limitations, is applied to the simulated waves. By this approach, only long horizontal-scale convective GWs are addressed. Results show that spectrum, distribution of momentum flux, and zonal mean forcing of long horizontal-scale convective GWs can be successfully simulated by the superposition of three or four combinations of parameter sets reproducing the observed GW spectrum. These selected parameter sets are different for northern and southern summer. Although long horizontal-scale waves are only part of the full spectrum of convective GWs, the momentum flux of these waves is found to be significant and relevant for the driving of the QBO (quasi-biennial oscillation). The zonal momentum balance is considered in vertical cross sections of GW momentum flux (GWMF) and GW drag (GWD). Global maps of the horizontal distribution of GWMF are considered and consistency between simulated results and HIRDLS observations is found. The latitude dependence of the zonal phase speed spectrum of GWMF and its change with altitude is discussed.

2015 ◽  
Vol 15 (23) ◽  
pp. 34325-34360
Author(s):  
Q. T. Trinh ◽  
S. Kalisch ◽  
P. Preusse ◽  
M. Ern ◽  
H.-Y. Chun ◽  
...  

Abstract. Convection as one dominant source of atmospheric gravity waves (GWs) has been in focus of investigation over recent years. However, its spatial and temporal forcing scales are not well known. In this work we address this open issue by a systematic verification of free parameters of the Yonsei convective GW source scheme based on observations from the High Resolution Dynamics Limb Sounder (HIRDLS). Observational constraints are taken into account by applying a comprehensive observational filter on the simulated GWs. By this approach, only long horizontal scale convective GWs are addressed. Results show that effects of long horizontal scale convective GWs can be successfully simulated by the superposition of three or four combinations of parameter sets reproducing the observed GW spectrum. These selected parameter sets are different for northern and southern summer. Although long horizontal scale waves are only part of the full spectrum of convective GWs, the momentum flux of these waves are found to be significant and relevant for the driving of the QBO. The zonal momentum balance is considered in vertical cross sections of GW momentum flux (GWMF) and GW drag (GWD). Global maps of the horizontal distribution of GWMF are considered and consistency between simulated results and HIRDLS observations is found. The latitude dependence of the zonal phase speed spectrum of GWMF and its change with altitude is discussed.


2019 ◽  
Vol 76 (9) ◽  
pp. 2941-2962
Author(s):  
Cory A. Barton ◽  
John P. McCormack ◽  
Stephen D. Eckermann ◽  
Karl W. Hoppel

Abstract A methodology is presented for objectively optimizing nonorographic gravity wave source parameters to minimize forecast error for target regions and forecast lead times. In this study, we employ a high-altitude version of the Navy Global Environmental Model (NAVGEM-HA) to ascertain the forcing needed to minimize hindcast errors in the equatorial lower stratospheric zonal-mean zonal winds in order to improve forecasts of the quasi-biennial oscillation (QBO) over seasonal time scales. Because subgrid-scale wave effects play a large role in driving the QBO, this method leverages the nonorographic gravity wave drag (GWD) parameterization scheme to provide the necessary forcing. To better constrain the GWD source parameters, we utilize ensembles of NAVGEM-HA hindcasts over the 2014–16 period with perturbed source parameters and develop a cost function to minimize errors in the equatorial lower stratosphere compared to analysis. Thus, we may determine the set of GWD source parameters that yields a forecast state that most closely agrees with observed QBO winds over each optimization time interval. Results show that the source momentum flux and phase speed spectrum width are the most important parameters. The seasonal evolution of optimal parameter value, specifically a robust semiannual periodicity in the source strength, is also revealed. Changes in optimal source parameters with increasing forecast lead time are seen, as the GWD parameterization takes on a more active role as QBO driver at longer forecast lengths. Implementation of a semiannually varying source function at the equator provides RMS error improvement in QBO winds over the default constant value.


2015 ◽  
Vol 72 (11) ◽  
pp. 4349-4371 ◽  
Author(s):  
Andrew C. Bushell ◽  
Neal Butchart ◽  
Stephen H. Derbyshire ◽  
David R. Jackson ◽  
Glenn J. Shutts ◽  
...  

Abstract Analysis of a high-resolution, convection-permitting simulation of the tropical Indian Ocean has revealed empirical relationships between precipitation and gravity wave vertical momentum flux on grid scales typical of earth system models. Hence, the authors take a rough functional form, whereby the wave flux source spectrum has an amplitude proportional to the square root of total precipitation, to represent gravity wave source strengths in the Met Office global model’s spectral nonorographic scheme. Key advantages of the new source are simplicity and responsiveness to changes in convection processes without dependence upon model-specific details of their representation. Thus, the new source scheme is potentially a straightforward adaptation for a class of spectral gravity wave schemes widely used for current state-of-the-art earth system models. Against an invariant source, the new parameterized source generates launch-level flux amplitudes with greater spatial and temporal variability, producing probability density functions for absolute momentum flux over the ocean that have extended tails of large-amplitude, low-occurrence events. Such distributions appear more realistic in comparison with reported balloon observations. Source intermittency at the launch level affects mean fluxes at higher levels in two ways: directly, as a result of upward propagation of the new source variation, and indirectly, through changes in filtering characteristics that arise from intermittency. Initial assessment of the new scheme in the Met Office global model indicates an improved representation of the quasi-biennial oscillation and sensitivity that offers potential for further impact in the future.


2013 ◽  
Vol 43 (10) ◽  
pp. 2156-2172 ◽  
Author(s):  
Laurent Grare ◽  
Luc Lenain ◽  
W. Kendall Melville

Abstract An analysis of coherent measurements of winds and waves from data collected during the Office of Naval Research (ONR) High-Resolution air–sea interaction (HiRes) program, from the Floating Instrument Platform (R/P FLIP), off the coast of northern California in June 2010 is presented. A suite of wind and wave measuring systems was deployed to resolve the modulation of the marine atmospheric boundary layer by waves. Spectral analysis of the data provided the wave-induced components of the wind velocity for various wind–wave conditions. The power spectral density, the amplitude, and the phase (relative to the waves) of these wave-induced components are computed and bin averaged over spectral wave age c/U(z) or c/u*, where c is the linear phase speed of the waves, U(z) is the mean wind speed measured at the height z of the anemometer, and u* is the friction velocity in the air. Results are qualitatively consistent with the critical layer theory of Miles. Across the critical height zc, defined such that U(zc) = c, the wave-induced vertical and horizontal velocities change significantly in both amplitude and phase. The measured wave-induced momentum flux shows that, for growing waves, less than 10% of the momentum flux at z ≈ 10 m is supported by waves longer than approximately 15 m. For older sea states, these waves are able to generate upward wave-induced momentum flux opposed to the overall downward momentum flux. The measured amplitude of this upward wave-induced momentum flux was up to 20% of the value of the total wind stress when Cp/u* > 60, where Cp is the phase speed at the peak of the wave spectrum.


2018 ◽  
Vol 11 (1) ◽  
pp. 215-232 ◽  
Author(s):  
Catrin I. Meyer ◽  
Manfred Ern ◽  
Lars Hoffmann ◽  
Quang Thai Trinh ◽  
M. Joan Alexander

Abstract. We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60∘ S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.


Author(s):  
Stephen D. Eckermann ◽  
Cory A. Barton

Abstract Gravity wave (GW) momentum and energy deposition are large components of the momentum and heat budgets of the stratosphere and mesosphere, affecting predictability across scales. Since weather and climate models cannot resolve the entire GW spectrum, GW parameterizations are required. Tuning these parameterizations is time-consuming and must be repeated whenever model configurations are changed. We introduce a self-tuning approach, called GW parameter retrieval (GWPR), applied when the model is coupled to a data assimilation (DA) system. A key component of GWPR is a linearized model of the sensitivity of model wind and temperature to the GW parameters, which is calculated using an ensemble of nonlinear forecasts with perturbed parameters. GWPR calculates optimal parameters using an adaptive grid search that reduces DA analysis increments via a cost-function minimization. We test GWPR within the Navy Global Environmental Model (NAVGEM) using three latitude-dependent GW parameters: peak momentum flux, phase-speed width of the Gaussian source spectrum, and phase-speed weighting relative to the source-level wind. Compared to a baseline experiment with fixed parameters, GWPR reduces analysis increments and improves 5-day mesospheric forecasts. Relative to the baseline, retrieved parameters reveal enhanced source-level fluxes and westward shift of the wave spectrum in the winter extratropics, which we relate to seasonal variations in frontogenesis. The GWPR reduces stratospheric increments near 60°S during austral winter, compensating for excessive baseline non-orographic GW drag. Tropical sensitivity is weaker due to significant absorption of GW in the stratosphere, resulting in less confidence in tropical GWPR values.


2006 ◽  
Vol 24 (1) ◽  
pp. 81-88 ◽  
Author(s):  
P. J. Espy ◽  
R. E. Hibbins ◽  
G. R. Swenson ◽  
J. Tang ◽  
M. J. Taylor ◽  
...  

Abstract. Images of mesospheric airglow and radar-wind measurements have been combined to estimate the difference in the vertical flux of horizontal momentum carried by high-frequency gravity waves over two dissimilar Antarctic stations. Rothera (67° S, 68° W) is situated in the mountains of the Peninsula near the edge of the wintertime polar vortex. In contrast, Halley (76° S, 27° W), some 1658 km to the southeast, is located on an ice sheet at the edge of the Antarctic Plateau and deep within the polar vortex during winter. The cross-correlation coefficients between the vertical and horizontal wind perturbations were calculated from sodium (Na) airglow imager data collected during the austral winter seasons of 2002 and 2003 at Rothera for comparison with the 2000 and 2001 results from Halley reported previously (Espy et al., 2004). These cross-correlation coefficients were combined with wind-velocity variances from coincident radar measurements to estimate the daily averaged upper-limit of the vertical flux of horizontal momentum due to gravity waves near the peak emission altitude of the Na nightglow layer, 90km. The resulting momentum flux at both stations displayed a large day-to-day variability and showed a marked seasonal rotation from the northwest to the southwest throughout the winter. However, the magnitude of the flux at Rothera was about 4 times larger than that at Halley, suggesting that the differences in the gravity-wave source functions and filtering by the underlying winds at the two stations create significant regional differences in wave forcing on the scale of the station separation.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 880
Author(s):  
Gabriel Augusto Giongo ◽  
José Valentin Bageston ◽  
Cosme Alexandre Oliveira Barros Figueiredo ◽  
Cristiano Max Wrasse ◽  
Hosik Kam ◽  
...  

This work presents the characteristics of gravity waves observed over Comandante Ferraz Antarctic Station (EACF: 62.1° S, 58.4° W). A total of 122 gravity waves were observed in 34 nights from March to October 2017, and their parameters were obtained by using the Fourier Transform spectral analysis. The majority of the observed waves presented horizontal wavelength ranging from 15 to 35 km, period from 5 to 20 min, and horizontal phase speed from 10 to 70 ± 2 m·s−1. The propagation direction showed an anisotropic condition, with the slower wave propagating mainly to the west, northwest and southeast directions, while the faster waves propagate to the east, southeast and south. Blocking diagrams for the period of April–July showed a good agreement between the wave propagation direction and the blocking positions, which are eastward oriented while the waves propagate mainly westward. A case study to investigate wave sources was conducted for the night of 20–21 July, wherein eight small-scale and one medium-scale gravity waves were identified. Reverse ray tracing model was used to investigate the gravity wave source, and the results showed that six among eight small-scale gravity waves were generated in the mesosphere. On the other hand, only two small-scale waves and the medium-scale gravity wave had likely tropospheric or stratospheric origin, however, they could not be associated with any reliable source.


2016 ◽  
Vol 73 (8) ◽  
pp. 3133-3155 ◽  
Author(s):  
Junhong Wei ◽  
Fuqing Zhang ◽  
Jadwiga H. Richter

Abstract This study investigates gravity wave spectral characteristics based on high-resolution mesoscale simulations of idealized moist baroclinic jet–front systems with varying degrees of convective instability, with the intent of improving nonorographic gravity wave parameterizations. In all experiments, there is a clear dominance of negative vertical flux of zonal momentum. The westward momentum flux is distributed around the estimated ground-based baroclinic wave phase velocity along the zonal direction, while strong moist runs indicate a dipole structure pattern with stronger westward momentum flux centers at slower phase velocity and weaker eastward momentum flux centers at faster phase velocity. The spectral properties of short-scale wave components (50–200 km) generally differ from those of medium-scale ones (200–600 km). Compared to the medium-scale wave components, the momentum flux phase speed spectra for the short-scale ones appear to be more sensitive to the increasing initial moisture content. The spectral behavior in horizontal wavenumber space or phase velocity space is highly anisotropic, with a noticeable preference along the jet direction, except for the short-scale components in strong moist runs. It is confirmed that the dry gravity wave source (i.e., upper jet and/or surface front) generates a relatively narrow and less symmetrical power spectrum (dominated by negative momentum flux) centered around lower phase velocity and horizontal wavenumber, whereas the moist gravity wave source (i.e., moist convection) generates a broader and more symmetrical power spectrum, with a broader range of phase speeds and horizontal wavenumbers. This study also shows that the properties of gravity wave momentum flux depend on the location relative to the baroclinic jet.


2006 ◽  
Vol 24 (12) ◽  
pp. 3229-3240 ◽  
Author(s):  
C. M. Wrasse ◽  
T. Nakamura ◽  
H. Takahashi ◽  
A. F. Medeiros ◽  
M. J. Taylor ◽  
...  

Abstract. Gravity wave signatures were extracted from OH airglow observations using all-sky CCD imagers at four different stations: Cachoeira Paulista (CP) (22.7° S, 45° W) and São João do Cariri (7.4° S, 36.5° W), Brazil; Tanjungsari (TJS) (6.9° S, 107.9° E), Indonesia and Shigaraki (34.9° N, 136° E), Japan. The gravity wave parameters are used as an input in a reverse ray tracing model to study the gravity wave vertical propagation trajectory and to estimate the wave source region. Gravity waves observed near the equator showed a shorter period and a larger phase velocity than those waves observed at low-middle latitudes. The waves ray traced down into the troposphere showed the largest horizontal wavelength and phase speed. The ray tracing results also showed that at CP, Cariri and Shigaraki the majority of the ray paths stopped in the mesosphere due to the condition of m2<0, while at TJS most of the waves are traced back into the troposphere. In summer time, most of the back traced waves have their final position stopped in the mesosphere due to m2<0 or critical level interactions (|m|→∞), which suggests the presence of ducting waves and/or waves generated in-situ. In the troposphere, the possible gravity wave sources are related to meteorological front activities and cloud convections at CP, while at Cariri and TJS tropical cloud convections near the equator are the most probable gravity wave sources. The tropospheric jet stream and the orography are thought to be the major responsible sources for the waves observed at Shigaraki.


Sign in / Sign up

Export Citation Format

Share Document