scholarly journals Climatological aspects of aerosol optical properties in Northern Greece

2003 ◽  
Vol 3 (2) ◽  
pp. 2059-2099 ◽  
Author(s):  
E. Gerasopoulos ◽  
M. O. Andreae ◽  
C. S. Zerefos ◽  
T. W. Andreae ◽  
D. Balis ◽  
...  

Abstract. Measurements of aerosol optical properties (aerosol optical depth, scattering and backscattering coefficients) have been conducted at two ground-based sites in Northern Greece, Ouranoupolis (40° 23' N, 23° 57 E, 170 m a.s.l.) and Thessaloniki (40° 38' N, 22° 57 E, 80 m a.s.l.), between 1999 and 2002. Their frequency distributions have revealed the presence of individual modes of high and low values, indicating the influence from different sources. At both sites, the mean aerosol optical depth at 500 nm was 0.23. Values increase considerably during summer when they remain persistently between 0.3 and 0.5, going up to 0.7–0.8 during specific cases. The mean value of 65±40 Mm−1 of the particle scattering coefficient at 550 nm reflects the impact of continental pollution in the regional boundary layer. Trajectory analysis has shown that higher values of aerosol optical depth and the scattering coefficient are found in the east sector (former Soviet Union countries, eastern Balkan countries), whereas cleaner conditions are found for the NW direction. The influence of Sahara dust events is clearly reflected in the Angström exponents. About 45–60% of the observed diurnal variation of the optical properties was attributed to the growth of aerosols with humidity, while the rest of the variability is in phase with the evolution of the sea-breeze cell. Local pollution is estimated to contribute 35±10% to the average aerosol optical depth at the Thessaloniki site during summer. Finally, the aerosol scale height was found to be related to the height of the boundary layer with values between 0.5–1 km during winter and up to 2.5–3 km during summer.

2003 ◽  
Vol 3 (6) ◽  
pp. 2025-2041 ◽  
Author(s):  
E. Gerasopoulos ◽  
M. O. Andreae ◽  
C. S. Zerefos ◽  
T. W. Andreae ◽  
D. Balis ◽  
...  

Abstract. Measurements of aerosol optical properties (aerosol optical depth, scattering and backscattering coefficients) have been conducted at two ground-based sites in Northern Greece, Ouranoupolis (40° 23' N, 23° 57' E, 170 m a.s.l.) and Thessaloniki (40° 38' N, 22° 57' E, 80 m a.s.l.), between 1999 and 2002. The frequency distributions of the observed parameters have revealed the presence of individual modes of high and low values, indicating the influence from different sources. At both sites, the mean aerosol optical depth at 500 nm was 0.23. Values increase considerably during summer when they remain persistently between 0.3 and 0.5, going up to 0.7-0.8 during specific cases. The mean value of 65±40 Mm-1 of the particle scattering coefficient at 550 nm reflects the impact of continental pollution in the regional boundary layer. Trajectory analysis has shown that higher values of aerosol optical depth and the scattering coefficient are found in the east sector (former Soviet Union countries, eastern Balkan countries), whereas cleaner conditions are found for the NW direction. The influence of Sahara dust events is clearly reflected in the Ångström exponents. About 45-60% of the observed diurnal variation of the optical properties was attributed to the growth of aerosols with humidity, while the rest of the variability is in phase with the evolution of the sea-breeze cell. The contribution of local pollution is estimated to contribute 35±10% to the average aerosol optical depth at the Thessaloniki site during summer. Finally, the aerosol scale height (aerosol optical depth divided by scattering coefficient) was found to be related to the height of the boundary layer with values between 0.5-1 km during winter and up to 2.5-3 km during summer.


2008 ◽  
Vol 25 (6) ◽  
pp. 928-944 ◽  
Author(s):  
K. M. Markowicz ◽  
P. J. Flatau ◽  
A. E. Kardas ◽  
J. Remiszewska ◽  
K. Stelmaszczyk ◽  
...  

Abstract The CT25K ceilometer is a general-purpose cloud height sensor employing lidar technology for detection of clouds. In this paper it is shown that it can also be used to retrieve aerosol optical properties in the boundary layer. The authors present a comparison of the CT25K instrument with the aerosol lidar system and discuss its good overall agreement for both the range-corrected signals and the retrieved extinction coefficient profiles. The CT25K aerosol profiling is mostly limited to the boundary layer, but it is capable of detecting events in the lower atmosphere such as mineral dust events between 1 and 3 km. Assumptions needed for the estimation of the aerosol extinction profiles are discussed. It is shown that, when a significant part of the aerosol layer is in the boundary layer, knowledge of the aerosol optical depth from a sun photometer allows inversion of the lidar signal. In other cases, surface observations of the aerosol optical properties are used. It is demonstrated that additional information from a nephelometer and aethalometer allows definition of the lidar ratio. Extinction retrievals based on spherical and randomly oriented spheroid assumptions are performed. It is shown, by comparison with the field measurements during the United Arab Emirates Unified Aerosol Experiment, that an assumption about specific particle shape is important for the extinction profile inversions. The authors indicate that this limitation of detection is a result of the relatively small sensitivity of this instrument in comparison to more sophisticated aerosol lidars. However, in many cases this does not play a significant role because globally only about 20% of the aerosol optical depth is above the boundary layer.


2011 ◽  
Vol 11 (12) ◽  
pp. 5959-5973 ◽  
Author(s):  
N. Ma ◽  
C. S. Zhao ◽  
A. Nowak ◽  
T. Müller ◽  
S. Pfeifer ◽  
...  

Abstract. The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China) project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties, including the scattering coefficient (σsp), the hemispheric back scattering coefficient (σbsp), the absorption coefficient (σap), as well as the single scattering albedo (ω), are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm−1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm−1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of $σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R>0.98) are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with the measured values, indicating a stable performance of instruments and thus reliable aerosol optical data.


2011 ◽  
Vol 11 (22) ◽  
pp. 11401-11413 ◽  
Author(s):  
V. P. Kiliyanpilakkil ◽  
N. Meskhidze

Abstract. The relationship between "clean marine" aerosol optical properties and ocean surface wind speed is explored using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses are carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. Based on remotely sensed optical properties the CALIPSO algorithm is capable of discriminating "clean marine" aerosols from other types often present over the ocean (such as urban/industrial pollution, desert dust and biomass burning). The global mean optical depth of "clean marine" aerosol at 532 nm (AOD532) is found to be 0.052 ± 0.038 (mean plus or minus standard deviation). The mean layer integrated particulate depolarization ratio of marine aerosols is 0.02 ± 0.016. Integrated attenuated backscatter and color ratio of marine aerosols at 532 nm were found to be 0.003 ± 0.002 sr−1 and 0.530 ± 0.149, respectively. A logistic regression between AOD532 and 10-m surface wind speed (U10) revealed three distinct regimes. For U10 ≤ 4 m s−1 the mean CALIPSO-derived AOD532 is found to be 0.02 ± 0.003 with little dependency on the surface wind speed. For 4 < U10 ≤ 12 m s−1, representing the dominant fraction of all available data, marine aerosol optical depth is linearly correlated with the surface wind speed values, with a slope of 0.006 s m−1. In this intermediate wind speed region, the AOD532 vs. U10 regression slope derived here is comparable to previously reported values. At very high wind speed values (U10 > 18 m s−1), the AOD532-wind speed relationship showed a tendency toward leveling off, asymptotically approaching value of 0.15. The conclusions of this study regarding the aerosol extinction vs. wind speed relationship may have been influenced by the constant lidar ratio used for CALIPSO-derived AOD532. Nevertheless, active satellite sensor used in this study that allows separation of maritime wind induced component of AOD from the total AOD over the ocean could lead to improvements in optical properties of sea spray aerosols and their production mechanisms.


2008 ◽  
Vol 8 (6) ◽  
pp. 19989-20018
Author(s):  
A. Cazorla ◽  
J. E. Shields ◽  
M. E. Karr ◽  
A. Burden ◽  
F. J. Olmo ◽  
...  

Abstract. The calibrated ground-based sky imager developed in the Marine Physical Laboratory, the Whole Sky Imager (WSI), has been tested to determine optical properties of the atmospheric aerosol. Different neural network-based models calculate the aerosol optical depth (AOD) for three wavelengths using the radiance extracted from the principal plane of sky images from the WSI as input parameters. The models use data from a CIMEL CE318 photometer for training and validation and the wavelengths used correspond to the closest wavelengths in both instruments. The spectral dependency of the AOD, characterized by the Ångström exponent α in the interval 440–870, is also derived using the standard AERONET procedure and also with a neural network-based model using the values obtained with a CIMEL CE318. The deviations between the WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncertainty assigned to the AERONET AOD calculation (±0.01), in 80% of the cases. The explanation of data variance by the model is over 92% in all cases. In the case of α, the deviation is within the uncertainty assigned to the AERONET α (±0.1) in 50% for the standard method and 84% for the neural network-based model. The explanation of data variance by the model is 63% for the standard method and 77% for the neural network-based model.


2018 ◽  
Vol 18 (12) ◽  
pp. 8829-8848 ◽  
Author(s):  
Justyna Lisok ◽  
Anna Rozwadowska ◽  
Jesper G. Pedersen ◽  
Krzysztof M. Markowicz ◽  
Christoph Ritter ◽  
...  

Abstract. The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.


2019 ◽  
Vol 19 (1) ◽  
pp. 295-313 ◽  
Author(s):  
Xiaomeng Jin ◽  
Arlene M. Fiore ◽  
Gabriele Curci ◽  
Alexei Lyapustin ◽  
Kevin Civerolo ◽  
...  

Abstract. Health impact analyses are increasingly tapping the broad spatial coverage of satellite aerosol optical depth (AOD) products to estimate human exposure to fine particulate matter (PM2.5). We use a forward geophysical approach to derive ground-level PM2.5 distributions from satellite AOD at 1 km2 resolution for 2011 over the northeastern US by applying relationships between surface PM2.5 and column AOD (calculated offline from speciated mass distributions) from a regional air quality model (CMAQ; 12×12 km2 horizontal resolution). Seasonal average satellite-derived PM2.5 reveals more spatial detail and best captures observed surface PM2.5 levels during summer. At the daily scale, however, satellite-derived PM2.5 is not only subject to measurement uncertainties from satellite instruments, but more importantly to uncertainties in the relationship between surface PM2.5 and column AOD. Using 11 ground-based AOD measurements within 10 km of surface PM2.5 monitors, we show that uncertainties in modeled PM2.5∕AOD can explain more than 70 % of the spatial and temporal variance in the total uncertainty in daily satellite-derived PM2.5 evaluated at PM2.5 monitors. This finding implies that a successful geophysical approach to deriving daily PM2.5 from satellite AOD requires model skill at capturing day-to-day variations in PM2.5∕AOD relationships. Overall, we estimate that uncertainties in the modeled PM2.5∕AOD lead to an error of 11 µg m−3 in daily satellite-derived PM2.5, and uncertainties in satellite AOD lead to an error of 8 µg m−3. Using multi-platform ground, airborne, and radiosonde measurements, we show that uncertainties of modeled PM2.5∕AOD are mainly driven by model uncertainties in aerosol column mass and speciation, while model representation of relative humidity and aerosol vertical profile shape contributes some systematic biases. The parameterization of aerosol optical properties, which determines the mass extinction efficiency, also contributes to random uncertainty, with the size distribution being the largest source of uncertainty and hygroscopicity of inorganic salt the second largest. Future efforts to reduce uncertainty in geophysical approaches to derive surface PM2.5 from satellite AOD would thus benefit from improving model representation of aerosol vertical distribution and aerosol optical properties, to narrow uncertainty in satellite-derived PM2.5.


2018 ◽  
Author(s):  
Xiaomeng Jin ◽  
Arlene M. Fiore ◽  
Gabriele Curci ◽  
Alexei Lyapustin ◽  
Kevin Civerolo ◽  
...  

Abstract. Health impact analyses are increasingly tapping the broad spatial coverage of satellite aerosol optical depth (AOD) products to estimate human exposure to fine particulate matter (PM2.5). We use a forward geophysical approach to derive ground-level PM2.5 distributions from satellite AOD at 1 km2 resolution for 2011 over the Northeast USA by applying relationships between surface PM2.5 and column AOD (calculated offline from speciated mass distributions) from a regional air quality model (CMAQ; 12 × 12 km2 horizontal resolution). Seasonal average satellite-derived PM2.5 reveals more spatial detail and best captures observed surface PM2.5 levels during summer. At the daily scale, however, satellite-derived PM2.5 is not only subject to measurement uncertainties from satellite instruments, but more importantly, to uncertainties in the relationship between surface PM2.5 and column AOD. Using 11 ground-based AOD measurements within 10 km of surface PM2.5 monitors, we show that uncertainties in modeled PM2.5/AOD can explain more than 70 % of the spatial and temporal variance in the total uncertainty in daily satellite-derived PM2.5 evaluated at PM2.5 monitors. This finding implies that a successful geophysical approach to deriving daily PM2.5 from satellite AOD requires model skill at capturing day-to-day variations in PM2.5/AOD relationships. Overall, we estimate that uncertainties in the modeled PM2.5/AOD lead to an error of 11 μg/m3 in daily satellite-derived PM2.5, and uncertainties in satellite AOD lead to an error of 8 μg/m3. Using multi-platform ground, airborne and radiosonde measurements, we show that uncertainties of modeled PM2.5/AOD are mainly driven by model uncertainties in aerosol column mass and speciation, while model uncertainties of relative humidity and aerosol vertical profile shape contribute some systematic biases. The parameterization of aerosol optical properties, which determines the mass-extinction efficiency, also contributes to random uncertainty, with the size distribution the largest source of uncertainty, and hygroscopicity of inorganic salt the second. Future efforts to reduce uncertainty in geophysical approaches to derive surface PM2.5 from satellite AOD would thus benefit from improving model representation of aerosol vertical distribution and aerosol optical properties, to narrow uncertainty in satellite-derived PM2.5.


Sign in / Sign up

Export Citation Format

Share Document