scholarly journals Investigation of Arctic ozone depletion sampled over midlatitudes during the Egrett Campaign of spring/summer 2000

2004 ◽  
Vol 4 (1) ◽  
pp. 141-168 ◽  
Author(s):  
D. E. M. Ross ◽  
J. A. Pyle ◽  
N. R. P. Harris ◽  
J. D. McIntyre ◽  
G. A. Millard ◽  
...  

Abstract. A unique halocarbon dataset has been obtained using the Australian high altitude research aircraft, the Grob G520T Egrett, during May–June 2000 with GC instrument (DIRAC), which has been previously deployed on balloon platforms. The halocarbon data generally shows a good anticorrelation with ozone data obtained simultaneously from commercial sensors. On 5 June 2000, at 380 K, the Egrett entered a high latitude tongue of air over the UK CFC-11 and O3 data obtained on the flight show evidence of this feature. The dataset has been used, in conjunction with a 3D chemical transport model, to infer ozone depletion encountered in the midlatitude lower stratosphere during the flight. We calculate that ozone is depleted by 20% relative to its winter value in the higher latitude airmass. A suite of ozone loss tracers in the model have been used to track ozone depletion according to location relative to the vortex and chemical cycle responsible. The model, initialised on 9 December, indicates that 50% of the total chemical ozone destruction encountered in June in the middle latitudes occurred between the 90–70° N equivalent latitude band and that 70% was due to halogen chemistry.

2004 ◽  
Vol 4 (5) ◽  
pp. 1407-1417 ◽  
Author(s):  
D. E. M. Ross ◽  
J. A. Pyle ◽  
N. R. P. Harris ◽  
J. D. McIntyre ◽  
G. A. Millard ◽  
...  

Abstract. A unique halocarbon dataset has been obtained using the Australian high altitude research aircraft, the Grob G520T Egrett, during May-June 2000 with GC instrument (DIRAC), which has been previously deployed on balloon platforms. The halocarbon data generally shows a good anticorrelation with ozone data obtained simultaneously from commercial sensors. On 5 June 2000, at 380K, the Egrett entered a high latitude tongue of air over the U.K. CFC-11 and O3 data obtained on the flight show evidence of this feature. The dataset has been used, in conjunction with a 3D chemical transport model, to infer ozone depletion encountered in the midlatitude lower stratosphere during the flight. We calculate that ozone is depleted by 20% relative to its winter value in the higher latitude airmass. A suite of ozone loss tracers in the model have been used to track ozone depletion according to location relative to the vortex and chemical cycle responsible. The model, initialised on 9 December, indicates that 50% of the total chemical ozone destruction encountered in June in the middle latitudes occurred in the 90-70°N equivalent latitude band and that 70% was due to halogen chemistry.


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2009 ◽  
Vol 9 (5) ◽  
pp. 18511-18543 ◽  
Author(s):  
J. Aschmann ◽  
B. M. Sinnhuber ◽  
E. L. Atlas ◽  
S. M. Schauffler

Abstract. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.


2003 ◽  
Vol 3 (1) ◽  
pp. 1081-1107 ◽  
Author(s):  
M. P. Chipperfield

Abstract. We have used a 3D off-line chemical transport model (CTM) to study the causes of the observed changes in ozone in the mid-high latitude lower stratosphere from 1979–1998. The model was forced by European Centre for Medium Range Weather Forecasts (ECMWF) analyses and contains a detailed chemistry scheme. A series of model runs were performed at a horizontal resolution of 7.5°×7.5° and covered the domain from about 12 km to 30 km. The basic model performs well in reproducing the decadal evolution of the springtime depletion in the northern hemisphere (NH) and southern hemisphere (SH) high latitudes in the 1980s and early 1990s. After about 1994 the modelled interannual variability does not match the observations as well, which is probably due in part to changes in the operational ECMWF analyses – which places limits on using this dataset to diagnose dynamical trends. For mid-latitudes (35°–60°) the basic model reproduces the observed column ozone decreases from 1980 until the early 1990s. Model experiments show that the halogen trends appear to dominate this modelled decrease and of this around 30–50% is due to high-latitude processing on polar stratospheric clouds (PSCs). Dynamically induced ozone variations in the model correlate with observations over the timescale of a few years. Large discrepancies between the modelled and observed variations in the mid 1980s and mid 1990s can be largely resolved by assuming that the 11-year solar cycle (not explicitly included in the 3D model) causes a 2% (min-max) change in mid-latitude column ozone.


2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


2010 ◽  
Vol 10 (13) ◽  
pp. 6097-6115 ◽  
Author(s):  
M. Claeyman ◽  
J.-L. Attié ◽  
L. El Amraoui ◽  
D. Cariolle ◽  
V.-H. Peuch ◽  
...  

Abstract. This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE (MOdèle de Chimie Atmospherique Grande Echelle). First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about ±25 ppbv (part per billion by volume) or 15% in the troposphere and ±10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere (UTLS). In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 Pa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years.


2018 ◽  
Vol 18 (2) ◽  
pp. 833-844 ◽  
Author(s):  
Sakae Toyoda ◽  
Naohiro Yoshida ◽  
Shinji Morimoto ◽  
Shuji Aoki ◽  
Takakiyo Nakazawa ◽  
...  

Abstract. Vertical profiles of nitrous oxide (N2O) and its isotopocules, isotopically substituted molecules, were obtained over the Equator at altitudes of 16–30 km. Whole air samples were collected using newly developed balloon-borne compact cryogenic samplers over the eastern equatorial Pacific in 2012 and Biak Island, Indonesia, in 2015. They were examined in the laboratory using gas chromatography and mass spectrometry. The mixing ratio and isotopocule ratios of N2O in the equatorial stratosphere showed a weaker vertical gradient than the previously reported profiles in the subtropical and mid-latitude and high-latitude stratosphere. From the relation between the mixing ratio and isotopocule ratios, further distinct characteristics were found over the Equator: (1) observed isotopocule fractionations (ε values) in the middle stratosphere (25–30 km or [N2O] < ca. 260 nmol mol−1) are almost equal to ε values reported from broadband photolysis experiments conducted in the laboratory; (2) ε values in the lower stratosphere (< ca. 25 km or [N2O] > ca. 260 nmol mol−1) are about half of the experimentally obtained values, being slightly larger than those observed in the mid-latitude and high-latitude lower stratosphere ([N2O] > ca. 170 nmol mol−1). These results from the deep tropics suggest the following. (i) The timescale for quasi-horizontal mixing between tropical and mid-latitude air in the tropical middle stratosphere is sufficiently slow relative to the tropical upwelling rate that isotope fractionation approaches the Rayleigh limit for N2O photolysis. (ii) The air in the tropical lower stratosphere is exchanged with extratropical air on a timescale that is shorter than that of photochemical decomposition of N2O. Previously observed ε values, which are invariably smaller than those of photolysis, can be explained qualitatively using a three-dimensional chemical transport model and using a simple model that assumes mixing of “aged” tropical air and extratropical air during residual circulation. Results show that isotopocule ratios are useful to examine the stratospheric transport scheme deduced from tracer–tracer relations.


2016 ◽  
Vol 16 (17) ◽  
pp. 11415-11431 ◽  
Author(s):  
Marsailidh M. Twigg ◽  
Evgenia Ilyinskaya ◽  
Sonya Beccaceci ◽  
David C. Green ◽  
Matthew R. Jones ◽  
...  

Abstract. Volcanic emissions, specifically from Iceland, pose a pan-European risk and are on the UK National Risk Register due to potential impacts on aviation, public health, agriculture, the environment and the economy, from both effusive and explosive activity. During the 2014–2015 fissure eruption at Holuhraun in Iceland, the UK atmosphere was significantly perturbed. This study focuses one major incursion in September 2014, affecting the surface concentrations of both aerosols and gases across the UK, with sites in Scotland experiencing the highest sulfur dioxide (SO2) concentrations. The perturbation event observed was confirmed to originate from the fissure eruption using satellite data from GOME2B and the chemical transport model, EMEP4UK, which was used to establish the spatial distribution of the plume over the UK during the event of interest. At the two UK European Monitoring and Evaluation Program (EMEP) supersite observatories (Auchencorth Moss, SE Scotland, and Harwell, SE England) significant alterations in sulfate (SO42−) content of PM10 and PM2.5 during this event, concurrently with evidence of an increase in ultrafine aerosol most likely due to nucleation and growth of aerosol within the plume, were observed. At Auchencorth Moss, higher hydrochloric acid (HCl) concentrations during the September event (max  =  1.21 µg m−3, cf. annual average 0.12 µg m−3 in 2013), were assessed to be due to acid displacement of chloride (Cl−) from sea salt (NaCl) to form HCl gas rather than due to primary emissions of HCl from Holuhraun. The gas and aerosol partitioning at Auchencorth Moss of inorganic species by thermodynamic modelling confirmed the observed partitioning of HCl. Using the data from the chemical thermodynamic model, ISORROPIA-II, there is evidence that the background aerosol, which is typically basic at this site, became acidic with an estimated pH of 3.8 during the peak of the event.Volcano plume episodes were periodically observed by the majority of the UK air quality monitoring networks during the first 4 months of the eruption (August–December 2014), at both hourly and monthly resolution. In the low-resolution networks, which provide monthly SO2 averages, concentrations were found to be significantly elevated at remote “clean” sites in NE Scotland and SW England, with record-high SO2 concentrations for some sites in September 2014. For sites which are regularly influenced by anthropogenic emissions, taking into account the underlying trends, the eruption led to statistically unremarkable SO2 concentrations (return probabilities  > 0.1, ∼ 10 months). However, for a few sites, SO2 concentrations were clearly much higher than has been previously observed (return probability < 0.005,  > 3000 months). The Holuhraun Icelandic eruption has resulted in a unique study providing direct evidence of atmospheric chemistry perturbation of both gases and aerosols in the UK background atmosphere. The measurements can be used to both challenge and verify existing atmospheric chemistry of volcano plumes, especially those originating from effusive eruptions, which have been underexplored due to limited observations available in the literature. If all European data sets were collated this would allow improved model verification and risk assessments for future volcanic eruptions of this type.


2011 ◽  
Vol 11 (2) ◽  
pp. 3857-3884 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
G. W. Mann ◽  
K. S. Carslaw ◽  
...  

Abstract. A three-dimensional (3-D) chemical transport model (CTM), SLIMCAT, has been used to quantify the effect of denitrification on ozone loss for the Arctic winter/spring 2004/05. The simulated HNO3 is found to be highly sensitive to the polar stratospheric cloud (PSC) scheme used in the model. Here the standard SLIMCAT full chemistry model, which uses a thermodynamic equilibrium PSC scheme, overpredicts the Arctic ozone loss for Arctic winter/spring 2004/05 due to the overestimation of denitrification and stronger chlorine activation than observed. A model run with a detailed microphysical denitrification scheme, DLAPSE (Denitrification by Lagrangian Particle Sedimentation), is less denitrified than the standard model run and better reproduces the observed HNO3 as measured by Airborne SUbmillimeter Radiometer (ASUR) and Aura Microwave Limb Sounder (MLS) instruments. The overestimated denitrification causes a small overestimation of Arctic polar ozone loss (~5–10% at ~17 km) by the standard model. Use of the DLAPSE scheme improves the simulation of Arctic ozone depletion compared with the inferred partial column ozone loss from ozonesondes and satellite data. Overall, denitrification is responsible for a ~30% enhancement in O3 depletion for Arctic winter/spring 2004/05, suggesting that the successful simulation of the impact of denitrification on Arctic ozone depletion also requires the use of a detailed microphysical PSC scheme in the model.


2006 ◽  
Vol 6 (4) ◽  
pp. 7697-7714
Author(s):  
M. C. Parrondo ◽  
M. Yela ◽  
M. Gil ◽  
P. von der Gathen ◽  
H. Ochoa

Abstract. Radiosonde temperature profiles from Belgrano (78° S) and other Antarctic stations have been compared with European Centre for Medium-Range Weather Forecasts (ECMWF) data during the winter of 2003. Results show a bias in the operational model which is height and temperature dependent, being too cold at layers peaking at 80 and 25–30 hPa, and hence resulting in an overestimation of the predicted potential PSC areas. Here we show the results of the comparison by considering the possibility of a bias in the sondes at extremely low temperatures and discuss the potential implications that this bias might have on the ozone depletion computed by Climate Transport Model based on ECMWF temperature fields.


Sign in / Sign up

Export Citation Format

Share Document